
Library
Version 3.00

airbit

m Mobile Shell, Library, Version 3.00
Written by Lukas Knecht

www.m-shell.net

Document AB-M-LIB-741

c© 2004-2008 airbit AG, 8008 Zürich, Switzerland

The information contained herein is the property of airbit AG and shall neither be
reproduced in whole or in part without prior written approval from airbit AG. All rights
are reserved, whether the whole or part of the material is concerned, specifically those of
translation, reprinting, reuse of illustration, broadcasting, reproduction by photocopying
machine or similar means and storage in data banks. airbit AG reserves the right to make
changes, without notice, to the contents contained herein and shall not be responsible for
any damages (including consequential) caused by reliance on the material as presented.

Typeset in Switzerland.

c© 2008 airbit AG Contents

Contents

1 Introduction 3

1.1 Module and Function Availability 3

1.2 Path and File Names . 4

2 Fundamental Modules 7

2.1 Builtin Functions and Constants 7

2.2 Module array: Array Functions 20

2.3 Module files: File and Directory Access 27

2.4 Module io: File and Stream Input/Output 36

2.5 Module system: System Related Functions 47

2.6 Module time: Time and Date Functions 50

2.7 Module zip: ZIP Archives 54

3 User Interface 57

3.1 Module graph: Screen Graphics 57

3.2 Module ui: User Interface Functions 82

3.3 Module vibra: Vibration Control 97

4 Mathematics 99

4.1 Module bigint: Arbitrarily Large Integers 99

4.2 Module math: Mathematical Functions 104

5 Personal Data 109

5.1 Module agenda: Agenda Database 109

5.2 Module contacts: Contacts Database 116

m Mobile Shell Library Version 3.00 1

Contents c© 2008 airbit AG

6 Communications 125

6.1 Module bt: Bluetooth Communication 125

6.2 Module comm: Serial Communications 137

6.3 Module net: TCP/IP Networking 141

7 Messaging 153

7.1 Module mms: Multimedia Messages 153

7.2 Module msg: Generic Message Access 159

7.3 Module obex: Object Exchange Client 164

7.4 Module sms: Short Messages 167

8 Multimedia 173

8.1 Module audio: Audio Functions 173

8.2 Module cam: Onboard Camera 181

8.3 Module video: Playing Videos 188

9 Telephony 195

9.1 Module gsm: GSM information 195

9.2 Module phone: Phone Calls 198

10 Applications and Processes 203

10.1 Module app: Application Control 203

10.2 Module async: Asynchronous Function Streams 209

10.3 Module proc: m Processes 213

11 Environment 221

11.1 Module accel: Accelerator Measurements 221

Index 225

2 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

1. Introduction
The m library contains a large number of functions, organized into
modules. Some functions are the standard functions you expect in any
serious programming language. Others are very specific to the typical
capabilities of a smart phone.

New modules can be added by yourself or by a third party, either written
in m, or written for the native platform. For Symbian OS, this is typically
a dynamic library.

See section 2.9 (Reference, p. 37) for more information on using and
writing modules. Just a reminder: to use any of the standard modules,
you have to load it via the use clause:

use math
print math.random()
→ 0.1488330803

1.1 Module and Function Availability

The items presented in this manual can be marked by the following:

• A tag with required user permissions (see section A.4 (Reference,
p. 82)), for instance
Permissions: ReadApp

If there is no such tag, no user permissions are required.

• A tag with capabilities required by Symbian platform security (see
chapter 6 (Reference, p. 67)), for instance
Capabilities: extended

If there is no such tag, basic capabilities are sufficient.

• A table describing compatibility issues on specific phones or phones
from specific manufacturers, for instance

m Mobile Shell Library Version 3.00 3

http://www.symbian.com

1. Introduction c© 2008 airbit AG

Compatibility of some function
ACME phones Call is ignored

If there is no such table, the function is supposed to work on all
phones.

1.2 Path and File Names

A complete file name in m (and in Symbian OS) consists of a drive, a
directory path, and the file name with extension. The drive is followed by
a colon; drive, directories and file name are separated by backslashes (\).
Since the backslash is also the escape character in strings, each backslash
must be entered as two backslashes (unless simplified interactive syntax
is used, see section 3.1 (Reference, p. 55)):

path="c:\\documents\\mShell\\script.m"

By convention, a directory name always ends with a backslash, allowing
immediate differentation between directory names and file names.

Function files.parse (p. 32) splits a file name into its four parts:

p=files.parse(path)
for k in keys(p) do
print k,p[k]

end
→ drive c:

dir \documents\mShell\
base script
ext .m

To avoid the need for a fully specified file name, each process in m
maintains a current directory (see .cd (p. 7)). Unlike in DOS/Windows,
which maintains a current directory for each drive, there is only one
current directory in m, which always includes the drive.

All functions taking file or directory names as arguments therefore accept
absolute, drive-relative or relative file names:

• Absolute file names start with the drive letter. The directory path
always starts from the root of the drive, even if the first backslash

4 m Mobile Shell Library Version 3.00

http://www.symbian.com

c© 2008 airbit AG 1.2. Path and File Names

is missing.

cd("c:documents");
print cd()
→ c:\documents\

• Drive-relative file names start with a backslash. They are always
relative to the root of the current drive (which is part of the current
directory).

cd("\\documents");
print cd()
→ c:\documents\

• Relative file names start with a directory name, or simply a file
name. They are always relative to the current directory.

cd("mShell");
print cd()
→ c:\documents\mShell\

m also interprets two special directory names:

• A single dot refers to the current directory.

• A double dot refers to the preceding directory.

Single and double dots can occur anywhere in the directory path.

cd("c:\\documents");
cd(".\\mShell"); // . refers to c:\documents
print cd()
→ c:\documents\mShell\
cd("..\\Jotter"); // .. refers to c:\documents
print cd()
→ c:\documents\Jotter\

m Mobile Shell Library Version 3.00 5

1. Introduction c© 2008 airbit AG

6 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

2. Fundamental Modules

2.1 Builtin Functions and Constants

The functions listed here are the standard m functions available without
importing any module. They can be called without a module or alias
prefix, or with an empty prefix (a dot).

print date();
print .date()

Both statements have the same effect.

.append

• function append(array, element, ...)→ null

Append one or more elements to the the end of array. The length of
array is increased by the number of elements appended.

arr=[];
append(arr, 17, "x");
print arr
→ [17,x]

.cd

• function cd()→ String

• function cd(newpath)→ String

Gets and sets the current (default) directory. This is the directory all file
or directory operations relate to. See also section 1.2 (p. 4).

Without an argument, cd returns the current directory without modifying
it. With a single argument, it changes the current directory to newpath

m Mobile Shell Library Version 3.00 7

2. Fundamental Modules c© 2008 airbit AG

and returns the previously set current directory. newpath can be absolute,
or relative to the current directory.

cd("c:\\");
print cd("system")
→ c:\
print cd("apps")
→ c:\system\
print cd()
→ c:\system\apps\

See also: files.mkdir (p. 31), files.rmdir (p. 33)

.char

• function char(array)→ String

Converts the array of numbers array to a string, interpreting each
number as a UNICODE R© BMP character code. The codes must be
numbers between 0 and 216 − 1 = 65535.

print char([72,101,108,108,111])
→ Hello

See also: .code (p. 8)

.cls

• function cls()→ null

Clears the screen, deleting all console output produced so far.

cls()

.code

• function code(text)→ Array

• function code(text, pos)→ Number

With a single argument, converts text to an array containing the
UNICODE R© number for each character. With two arguments, returns the

8 m Mobile Shell Library Version 3.00

http://www.unicode.org
http://www.unicode.org

c© 2008 airbit AG 2.1. Builtin Functions and Constants

code for the character at position pos of text.

print code("Hello")
→ [72,101,108,108,111]
print code("Hello", 1)
→ 101

See also: .char (p. 8).

.collate

• function collate(s1, s2)→ Number

Compare the two strings s1 and s2, correctly ordering accents and
umlauts depending on the current locale. Returns a negative number if
s1 < s2, zero if s1 = s2, a positive number if s1 > s2.

// Flüge comes before Flugzeug in lexical ordering
print collate("Flüge", "Flugzeug")
→ -1
// simple raw ordering produces the wrong result
print "Flüge" < "Flugzeug"
→ false

See also: constant array.collate (p. 27).

.date

• function date()→ String

Get the current local date and time in the format YYYY-MM-DD hh:mm:ss.
See also module time (p. 50).

print date()
→ 2005-02-21 12:18:55

.equal

• function equal(a, b)→ Boolean

Compares two values a and b for equality and returns true if they are
equal, false if they are not equal. Unlike the m language = operator,

m Mobile Shell Library Version 3.00 9

2. Fundamental Modules c© 2008 airbit AG

this function compares arrays elementwise: two arrays are identical if
they have the same length and all their elements are equal.

a=[1, 2, [3, 4]]
b=a;
print a=b, equal(a, b)
→ true true
b=[1, 2, [3, 4]];
print a=b, equal(a, b)
→ false true

Note that the function will crash m if you pass two identical recursive
arrays for which equality or inequality cannot be determined.

a=[0]; a[0]=a;
b=[0]; b[0]=b;
equal(a, b) // this will crash m

.delete

• function delete(text, start)→ String

• function delete(text, start, length)→ String

Deletes the substring from text from position start, either to the end
of text, or the next length characters. The first character has position
0.

Throws ExcStringPosOutOfRange if not 0 <= start <= len(text),
or if not 0 <= length <= len(text) - start.

print delete("Hello world!", 6)
→ Hello
print substr("Hello world!", 3, 5)
→ Helrld!

See also: .substr (p. 18)

.hexnum

• function hexnum(text)→ Number

Converts the string text representing a hexadecimal integer value into

10 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.1. Builtin Functions and Constants

the value. The value can be signed. Uppercase and lowercase digits are
allowed, and leading and trailing blanks are ignored.

print hexnum("1fff");
→ 8191
print hexnum(" -ABACADA ");
→ -180013786

See also: .num (p. 15)

.hexstr

• function hexstr(number, width=0)→ String

Formats number into an integer hexadecimal value. If necessary, zeros
are added before the string until its length is at least width.

print hexstr(8191)
→ 1fff
print hexstr(-180013786, 12)
→ -0000abacada

See also: .str (p. 17)

.index

• function index(text, pattern, start=0, folded=false)→
Number

Searches the string text for the first occurence of the string pattern

at or after start and returns the position. If pattern does not occur, -1
is returned. If folded=true, the comparison between text and pattern
ignores case.

Throws ExcStringPosOutOfRange if not 0 <= start <= len(text).

m Mobile Shell Library Version 3.00 11

2. Fundamental Modules c© 2008 airbit AG

print index("To be, or not to be", "to be")
→ 14
print index("To be, or not to be", "to be", 0, true)
→ 0
print index("To be, or not to be", "to be", 1, true)
→ 14
print index("To be, or not to be", "to be or not")
→ -1

See also: .rindex (p. 16)

.isarray

• function isarray(expression)→ Boolean

Returns true if expression is an array, false if it is any other type.

print isarray([])
→ true
print isarray("String")
→ false

.isboolean

• function isboolean(expression)→ Boolean

Returns true if expression is a boolean (i.e. true or false), false if
it is any other type.

print isboolean(4 > 5)
→ true
print isboolean(4+5)
→ false

.isfunction

• function isfunction(expression)→ Boolean

Returns true if expression is a function reference, false if it is any
other type.

12 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.1. Builtin Functions and Constants

print isfunction(&cd)
→ true
print isfunction(cd())
→ false

.isinst

• function isinst(expression)→ Boolean

Returns true if expression is a class instance, false if it is any other
type.

isinst(x) is equivalent to x is .Instance and x # null.

print isinst(.Instance())
→ true
print isinst(null)
→ false

.isinstfunc

• function isinstfunc(expression)→ Boolean

Returns true if expression is an instance function reference, false if
it is any other type.

x:.Instance=.Instance()
print isinstfunc(x.&init)
→ true
print isinstfunc(&cd)
→ false

.isnative

• function isnative(expression)→ Boolean

Returns true if expression is a native object, false if it is any other
type.

m Mobile Shell Library Version 3.00 13

2. Fundamental Modules c© 2008 airbit AG

print isnative(io.create("sample.xml"))
→ true
print isnative([])
→ false

.isnum

• function isnum(expression)→ Boolean

Returns true if expression is a number, false if it is any other type.

print isnum(13.26)
→ true
print isnum("13.26")
→ false
print isnum(num("13.26"))
→ true

.isstr

• function isstr(expression)→ Boolean

Returns true if expression is a string, false if it is any other type.

print isstr("Hello")
→ true
print isstr(null)
→ false

.keys

• function keys(array)→ Array

Returns an array of length len(array), with each element set to the
string key of the element at this position in array, or set to null if the
element at this position has no key.

a=["one":1, "two":2, 3, "four":4, 5];
print keys(a)
→ ["one", "two", null, "four", null]

14 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.1. Builtin Functions and Constants

.len

• function len(array)→ Integer

• function len(text)→ Integer

Returns the length (number of elements) of the array array, or the
length (number of characters) of the string text.

print len("Hello")
→ 5
print len("")
→ 0
print len([7, 8, 9])
→ 3
print len([])
→ 0

.lower

• function lower(text)→ String

Returns a copy of text, with all uppercase characters converted to their
lowercase equivalent.

print lower("Hello")
→ hello
print lower("WATCH OUT!")
→ watch out!

.num

• function num(text)→ Number

Converts the string text representing a numeric value into the value.
The syntax for the number is the same as for numeric literals (see 2.3
(Reference, p. 7)). Leading and trailing blanks are ignored.

print 21+num(’21’)
→ 42
print num(" -15.8e4 ")
→ -158000

m Mobile Shell Library Version 3.00 15

2. Fundamental Modules c© 2008 airbit AG

.replace

• function replace(text, old, new)→ String

Replaces all occurences of old in text by new, and returns the string
with replacements made. old and new need not have the same length.

print replace("Hello world!", "l", "ll")
→ Hellllo worlld!"
print replace("Hello world!", "l", "")
→ Heo word!"

.rindex

• function rindex(text, pattern, start=len(text)-1,
folded=false)→ Number

Searches the string text for the last occurence of the string text at or
before start and returns the position. If pattern does not occur, -1 is
returned. If folded=true, the comparison between text and pattern
ignores case.

Throws ExcStringPosOutOfRange if not -1 <= start < len(text).

print rindex("To be, or not to be", "To be")
→ 0
print rindex("To be, or not to be", "To be", 18, true)
→ 14
print rindex("To be, or not to be", "To be", 13, true)
→ 0
print rindex("To be, or not to be", "to be or not")
→ -1

See also: .index (p. 11)

.sleep

• function sleep(milliseconds)→ null

Pauses execution for (at least) the number of milliseconds (1/1000 of a
second) before returning. If milliseconds is negative or zero, execution
continues immediately, but other m processes immediately get a chance

16 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.1. Builtin Functions and Constants

to run, before they are preempted by the scheduler.

Throws ExcValueOutOfRange if milliseconds exceeds 2147483 (35
minutes and 47.483 seconds).

sleep(500) // wait for 1/2 s

.split

• function split(text)→ Array

• function split(text, separator)→ Array

With one argument, splits text into words separated by any amount of
white space1.

With two arguments, splits text into substrings at each occurrence of
separator. separator can be of any positive length.

Throws ErrArgument if separator is the empty string.

print split(" To be, or not to be?")
→ [To,be,,or,not,to,be?]
print split("Line 1

Line 3
", "
")
→ [Line 1,,Line 3,]

.str

• function str(expression, width=0)→ String

• function str(number, width, decimals)→ String

Converts an expression or a number to string:

• The first form converts an expression to a string, using the same
rules as the print statement (see 2.7.10 (Reference, p. 30)):

print str(1 < 3)
→ true

1White space: a sequence of characters equal to or less than space. This includes tab
and newline.

m Mobile Shell Library Version 3.00 17

2. Fundamental Modules c© 2008 airbit AG

If width >= 0, spaces are added before the string until its
length is at least width. The result is thus right adjusted.

print str(1 < 3, 8)
→ true

If width < 0, spaces are added after the string until its length
is at least -width. The result is thus left adjusted.

print str("hello", -8) + "world"
→ hello world

• The second form formats number into a fixed or floating point
representation, depending on decimals:

If decimals = 0, the number is represented without decimal
positions and without decimal point, as if it were an integer:

print str(10000/7, 6, 0)
→ 1429

If decimals > 0, the number is represented with decimal
point and the given number of decimal positions:

print str(10000/7, 0, 3)
→ 1428.571

If decimals < 0, the number is represented with floating
point and the given number of significant digits:

print str(10000/7, 10, -3)
→ 1.43E+03
print str(10000/7, 0, -1)
→ 1E+03

.substr

• function substr(text, start)→ String

• function substr(text, start, length)→ String

Extracts a substring from text from position start, either to the end of
text, or the next length characters. The first character has position 0.

18 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.1. Builtin Functions and Constants

Throws ExcStringPosOutOfRange if not 0 <= start <= len(text),
or if not 0 <= length <= len(text) - start.

print substr("Hello world!", 6)
→ world!
print substr("Hello world!", 3, 5)
→ lo wo

.trim

• function trim(text)→ String

Returns a copy of text, with leading and trailing blanks removed.

print trim("Hello")
→ Hello
print trim(" world! ")
→ world!

.upper

• function upper(text)→ String

Returns a copy of text, with all lowercase characters converted to their
uppercase equivalent.

print upper("Hello")
→ HELLO
print upper("watch out!")
→ WATCH OUT!

Constants

• const version = 3.00

The current version of m. Of course, for a different version this number
will be different from 3.00.

m Mobile Shell Library Version 3.00 19

2. Fundamental Modules c© 2008 airbit AG

2.2 Module array: Array Functions

This module provides utility functions to create, manipulate, search and
sort arrays.

array.concat

• function concat(array1, array2, ...)→ Array

Concatenates all arguments to a single array and returns it. Any keys of
the arrays are copied to the resulting array. If the same key occurs more
than once, the key will reference the element where it occurred last.

a=[1, 2, "three":3, 4, 5];
b=[7, "eight":8];
c=array.concat(a, b, [9]);
print c, c["eight"]
→ [1,2,3,4,5,7,8,9] 8
print keys(c)
→ [null,null,three,null,null,null,eight,null]

array.copy

• function copy(array, start=0)→ Array

• function copy(array, start, length)→ Array

• function copy(array, indices)→ Array

Extracts a copy of array:

• from element start to the end of the array, or length elements,

• if indices is an array, the elements with indices in indices.

Only the array is copied, its elements remain the same (this is only relevant
if the elements are themselves arrays).

Any keys of the copied elements are also copied to the new array.

Throws ExcIndexOutOfRange if not 0 <= start <= len(array),
or if not 0 <= length <= len(array) - start, or if any 0 <=

indices[i] < len(array).

20 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.2. Module array: Array Functions

a=[1, 2, "three":3, 4, 5];
print array.copy(a)
→ [1,2,3,4,5]
print array.copy(a, 3)
→ [4,5]
b=array.copy(a, 1, 3);
print b, b["three"]
→ [2,3,4] 3
print array.copy(a, [3, 2])
→ [4, 3]

array.create

• function create(len, initval)→ Array

• function create(len1, len2, ..., lenn, initval)→ Array

Creates a one-dimensional array of length len, or a multi-dimensional
array of arrays, with dimensions len1 x len2 x ... x lenn, with all
array elements set to initval.

a=array.create(3,3,0); // create a 3x3 matrix of zeros
print a
→ [[0,0,0],[0,0,0],[0,0,0]]
b=array.create(10, "x"); // create an array of ten "x"
print b
→ [x,x,x,x,x,x,x,x,x,x]

array.fill

• function fill(array, val, start=0)→ null

• function fill(array, val, start, length)→ null

Sets the elements of array array to val, from element start to the end
of the array, or length elements.

Throws ExcIndexOutOfRange if not 0 <= start <= len(array), or
if not 0 <= length <= len(array) - start.

m Mobile Shell Library Version 3.00 21

2. Fundamental Modules c© 2008 airbit AG

a=[1,2,3,4,5];
array.fill(a, 0);
print a
→ [0,0,0,0,0]
array.fill(a, false, 1, 2);
print a
→ [0,false,false,0,0]

array.index

• function index(array, val, start=0)→ Number

Searches the array array for the first element at or after start equal to
val, and returns the index of the element. If there is no such element,
returns -1. Elements are compared using the builtin function .equal

(p. 9).

Throws ExcIndexOutOfRange if not 0 <= start <= len(array).

a=["To", "be", "or", "not", "to", "be"];
print array.index(a, "be")
→ 1
print array.index(a, "Be")
→ -1
print array.index(a, "be", 2)
→ 5
print array.index(a, "be", 6)
→ -1

See also: array.rindex (p. 26)

array.insert

• function insert(array, pos, element, ...)→ null

Inserts one or more elements into array before position pos. The
elements at or after pos are moved up. The length of array is increased
by the number of elements inserted.

Throws ExcIndexOutOfRange if not 0 <= pos <= len(array).

22 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.2. Module array: Array Functions

arr=[29, 18, -4];
array.insert(arr, 2, 17, "x");
print arr
→ [29,18,17,x,-4]

See also: .append (p. 7)

array.isort

• function isort(array, desc=false, mode=raw,
ind=[0,1,...,len(array)-1])→ Array

Sorts the indices ind such that the elements array[ind[i]] are sorted
in ascending order, or in descending order if desc=true, and returns the
sorted indices.

String comparisons are performed according to mode2 (one of
array.raw, array.fold, array.collate).

Throws ExcNotComparable if the elements of interest in array are not
all numbers or not all strings.

Throws ExcIndexOutOfRange if any element of ind does not properly
index into array.

See also: array.sort (p. 26), array.copy (p. 20)

a=[412,-302,18,2077,22,149,18];
ind=array.isort(a);
print ind
→ [1,2,6,4,5,0,3]
print array.copy(a, ind)
→ [-302,18,18,22,149,412,2077]
print array.isort(a, true)
→ [3,0,5,4,2,6,1]
a=["To", "be", "or", "not", "to", "be"];
print array.isort(a)
→ [0,1,5,3,2,4]
print array.isort(a, false, array.fold)
→ [1,5,3,2,0,4]
print array.isort(a, false, array.fold, [1,2,3])
→ [1,3,2]

2This sort is always stable.

m Mobile Shell Library Version 3.00 23

2. Fundamental Modules c© 2008 airbit AG

array.leindex

• function leindex(arr, val, mode=raw)→ Number

Searches the sorted array arr for the first index of the largest element
less than or equal to val. Comparisons use the specified mode (one of
array.raw (p. 27), array.fold, array.collate).

Returns -1 if all elements of arr are larger than val.

Since the array is sorted, searching can be performed much more
efficiently than with an unsorted array. The difference is however only
noticable for relatively large arrays (around 100 elements or more).

a=[412,-302,18,2077,22,149,18,21];
array.sort(a);
print a
→ [-302,18,18,21,22,149,412,2077]
print array.leindex(a, 22)
→ 4
print array.leindex(a, 3000)
→ 8
print array.leindex(a, -3000)
→ -1
print array.leindex(a, 18)
→ 1

array.new

• function new(size=0, foldedkeys=false)→ Array

Creates a new array of length 0, with pre-allocated capacity for up to
size elements.

For large arrays, pre-allocating the correct size is considerably more
efficient. It avoids reallocating and copying the array contents, and it
ensures the array being of minimal size. On the other hand, besides
effects on memory needs and runtime, pre-allocating an array will never
change the result of any computation in m.

If foldedkeys=true, the string keys of the array are compared folded,
i.e. are not case sensitive. This is the only way of creating an associative
array with keys that are not case sensitive.

24 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.2. Module array: Array Functions

a=array.new(1000);
for i=1 to 1000 do
append(a, i) // will never allocate memory

end;
a=array.new(); // same as a=[]
print a
→ []
a=array.new(5, true); // keys of a ignore case
a["one"] = 1;
a["ONE"] = 2;
print a, keys(a)
→ [2] [one]

array.remove

• function remove(array, start, length=1)→ null

• function remove(array, key)→ null

Removes one or several elements from array. The elements after the
removed one(s) are shifted accordingly, and the length of array is
reduced by the number of removed elements.

The first form removes a region of length length, starting at start. It
throws ExcIndexOutOfRange if not 0 <= start <= len(array), or
if not 0 <= length <= len(array) - start.

The second form removes the single element with string key key. It
throws ExcNoSuchKey if this key does not exist.

a=["one":1, "two":2, 3, "four":4, 5];
array.remove(a, 3);
print a, keys(a)
→ [1,2,3,5] [one,two,null,null]
array.remove(a, "one");
print a, keys(a)
→ [2,3,5] [two,null,null]
array.remove(a, 0, 3);
print a, keys(a)
→ [] []

m Mobile Shell Library Version 3.00 25

2. Fundamental Modules c© 2008 airbit AG

array.rindex

• function rindex(array, val, start=len(array)-1)→
Number

Searches the array array for the first element at or before start equal
to val, and returns the index of the element. If there is no such element,
returns -1. Elements are compared using the builtin function .equal

(p. 9).

Throws ExcIndexOutOfRange if not -1 <= start < len(array).

a=["To", "be", "or", "not", "to", "be"];
print array.rindex(a, "be")
→ 5
print array.rindex(a, "Be")
→ -1
print array.rindex(a, "be", 4)
→ 1
print array.rindex(a, "be", 0)
→ -1

See also: array.index (p. 22)

array.sort

• function sort(array, desc=false, mode=raw)→ null

Sorts the array array in ascending order, or in descending order if
desc=true. String comparisons are performed according to mode 3 (one
of array.raw, array.fold, array.collate, see below).

Throws ExcNotComparable if the elements are not all numbers or not
all strings.

See also: array.isort (p. 23)

3Sorting is not stable if mode#raw.

26 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.3. Module files: File and Directory Access

a=[412,-302,18,2077,22,149,18];
array.sort(a);
print a
→ [-302,18,18,22,149,412,2077]
array.sort(a, true);
print a
→ [2077,412,149,22,18,18,-302]
a=["To", "be", "or", "not", "to", "be"];
array.sort(a);
print a
→ [To,be,be,not,or,to]
array.sort(a, false, array.fold);
print a
→ [be,be,not,or,To,to]

array Constants

• const collate = 2 This mode correctly compares accents and
umlauts, depending on the current locale.

• const fold = 1 This mode ignores case when comparing.

• const raw = 0 This mode directly compares 16-bit character codes.

2.3 Module files: File and Directory Access

This module provides access to files and directories of the underlying op-
erating system, including a function to send a file via different messaging
interfaces (‘‘send as’’).

To read and write files, use module io (p. 36).

If not absolute, pathes are always relative to the current directory. See
also section 1.2 (p. 4).

Some functions of this module allow the use of file patterns: these
may contain the wildcards * matching any number of characters,
and ’?’ matching a single character. For instance, the pat-
tern d:\documents\mShell*Test.* matches any file in directory
\documents\mShell on drive D: whose name ends with Test.

Many of the functions in this module can render a mobile phone

m Mobile Shell Library Version 3.00 27

2. Fundamental Modules c© 2008 airbit AG

completely unusable, e.g. by deleting system configuration data, or by
overwriting sensitive files. Make sure you regularly back up your mobile
phone, and inform yourself how to reset your phone to factory status.
You have been warned!

files.attr

• function attr(path)→ Number

Permissions: Read(path)

• function attr(path, newattr)→ Number

Permissions: Read+Write(path)

Gets or sets the attribute bits of a file. With one argument, returns the
attribute bits of the file or directory path. With two arguments, returns
the old file attributes, and sets the new attributes of path.

The attribute bits define the characteristics of a file:

• const arch = 32 File or directory has the archive bit set.

• const dir = 16 Path references a directory.

• const hidden = 2 File or directory is hidden (invisible).

• const ro = 1 File or directory is read-only.

• const sys = 4 File or directory has the system bit set.

• const all = 55 All attribute bits set.

The status of the files.dir attribute cannot be changed.

Use the bitwise or operator | to combine single bits; use the bitwise and
operator & to check for single bits.

// make the file "secret.dat" read-only and invisible
files.attr("secret.dat", files.ro | files.hidden);
// check whether a path is a directory
print
files.attr("c:\\documents\\mShell") & files.dir # 0

→ true

See also: files.scan (p. 33)

28 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.3. Module files: File and Directory Access

files.copy

• function copy(srcpattern, destdir, recursive=false)→
Number

/r:recursive

Permissions: Read(srcpattern)+Write(destdir)

Copies a file or all files matching srcpattern to another directory
destdir. If recursive=true, or /r is specified in interactive mode, also
copies all files matching the file part of srcpattern in all subdirectories
of the directory part of srcpattern, and creates the corresponding
subdirectories in destdir.

Returns the number of files copied.

In interactive shells, this function is available as cp.

print files.copy("secret.dat", "d:\\")
→ 1
// copy all m scripts from drive C: to drive D:
files.copy("c:\\documents\\mShell*.m",

"d:\\documents\\mShell", true)

m>cp c:\documents\mShell*.m d:\documents\mShell/r

The last two statements (the second in interactive mode) are equivalent.

files.delete

• function delete(pattern, recursive=false)→ Number

/r:recursive

Permissions: Write(pattern)

Deletes a file or all files matching pattern. If recursive=true, or /r is
specified in interactive mode, also deletes all files matching the file part
of pattern in all subdirectories of the directory part of pattern.

Returns the number of files deleted.

In interactive shells, this function is available as del.

m Mobile Shell Library Version 3.00 29

2. Fundamental Modules c© 2008 airbit AG

print files.delete("secret.dat");
→ 1
// delete all m scripts from drive C:
files.delete(""c:\\documents\\mShell*.m", true)

m>del c:\documents\mShell*.m/r

The last two statements (the second in interactive mode) are equivalent.

See also: files.rmdir (p. 33)

files.edit

• function edit(path, cursor=0)→ null

Permissions: Read+Write(path)

Loads the file path into the builtin editor, and shows the editor. Any
previously loaded file (e.g. a script being edited) will be saved first. The
cursor is moved to position cursor in the file. The character encoding
applied is determined by the encoding property (see A.3 (Reference,
p. 78)).

In interactive shells, this function is available as edit.

// edit an XML file
files.edit("\\documents\\MMS\\Sample.xml")

files.exists

• function exists(path)→ Boolean

Permissions: Read(path)

Returns true if the file or directory denoted by path exists, false if
there is no such file or directory.

print files.exists("c:\\documents\\mShell")
→ true

30 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.3. Module files: File and Directory Access

files.mkdir

• function mkdir(path, all=false)→ null

/a:all

Permissions: Write(path)

Create a new directory path. path can be relative to the current
directory, or absolute. See also section 1.2 (p. 4).

If all=false, mkdir creates just one directory. If all=true, or /a is
specified in interactive mode, all directories down to the last in path are
created, as necessary.

In interactive shells, this function is available as md.

mkdir("subdir");
mkdir("..\\otherdir");
mkdir("c:\\documents\\mShell", true)

m>md c:\documents\mShell/a

The last two statements (the second in interactive mode) are equivalent.

files.move

• function move(srcpattern, destpath, recursive=false)→
Number

/r:recursive

Permissions: Read+Write(srcpattern), Write(destdir)

Moves a file or all files matching srcpattern to another directory
destdir. If recursive=true, or /r is specified in interactive mode, also
moves all files matching the file part of srcpattern in all subdirectories of
the directory part of srcpattern, removes and creates the corresponding
subdirectories in destdir.

Returns the number of files moved.

In interactive shells, this function is available as mv.

m Mobile Shell Library Version 3.00 31

2. Fundamental Modules c© 2008 airbit AG

print files.move("secret.dat", "d:\\")
→ 1
// move all m scripts from drive C: to drive D:
files.move("c:\\documents\\mShell*.m",

"d:\\documents\\mShell", true)

m>mv c:\documents\mShell*.m d:\documents\mShell/r

The last two statements (the second in interactive mode) are equivalent.

files.parse

• function parse(path)→ Array

Parses a path into its four components and returns them as an array:

Key Meaning Type
drive Drive (with trailing colon) String
dir Directory (with trailing backslash) String
base Base file name String
ext Extension (with leading dot) String

path="c:\\documents\\mShell\\script.m";
print files.parse(path)
→ [c:,\documents\mShell\,script,.m]
// Concatenating the four components will
// always produce the original name:
n="";
for p in files.parse(path) do n = n + p end;
print n
→ c:\documents\mShell\script.m

files.rename

• function rename(oldfile, newfile)→ null

Permissions: Write(oldfile)+Write(newfile)

Renames the file or directory oldfile to newfile. This function does
not support wildcards.

files.rename("secret.dat", "topsecret.dat")

32 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.3. Module files: File and Directory Access

files.rmdir

• function rmdir(path, recursive=false)→ Number

/r:recursive

Permissions: Write(path)

Removes the directory path. If recursive=false, the directory must
be empty before it can removed. If recursive=true, or /r is specified
in interactive mode, the directory with all its contents and subdirectories
will be removed.

Returns the number of directories and files removed.

In interactive shells, this function is available as rd.

print rmdir("subdir")
→ 1
rmdir("..\\otherdir");
rmdir("c:\\myfiles\\images", true)

m>rd c:\myfiles\images/r
→ (number of items removed)

The last two statements (the second in interactive mode) are equivalent:
they both remove the directory images with all its contents.

files.roots

• function roots()→ Array

Returns an array with all accessible file system roots (drives).

print files.roots()
→ [A:,C:,D:,Z:]

files.scan

• function scan(pattern, attr=0, mask=files.dir |
files.hidden | files.sys)→ Array

Permissions: Read(pattern)

Returns an array with all directory entries whose name matches pattern

m Mobile Shell Library Version 3.00 33

2. Fundamental Modules c© 2008 airbit AG

and whose attribute bits defined by mask match attr: a file path

matches if
files.attr(path) & mask = attr & mask.

Example values for attr and mask:

• The default values exclude directories, hidden and system files.

• attr=files.dir returns only directories.

• mask=0 ignores all attributes and thus returns all entries.

• attr=files.ro and mask=files.ro return only read only files
and directories.

• attr=files.arch and mask=files.dir|files.arch return
only files with the archive bit set.

The file names returned do not contain the directory part defined by
pattern, and are sorted by name.

// search the application directory for m help files
print files.scan(system.appdir+"*.mhp")
→ [agenda.mhp,app.mhp,array.mhp,audio.mhp,bigint.mhp,

bt.mhp,cam.mhp,comm.mhp,contacts.mhp,default.mhp,
files.mhp,graph.mhp,...<28>]

// search the document directory for hidden files only
print files.scan(system.docdir+"*",files.hidden)
→ [10204299.act]

files.send

• function send(path, subject=null)→ null

Permissions: Read(path)

Compatibility of function files.send

Nokia phones before Symbian 8 Call is ignored

Sends the file path over a messaging channel chosen by the user (‘‘Send
as’’). Channels typically include Bluetooth, MMS, and e-mail. The

34 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.3. Module files: File and Directory Access

recipient and other channel dependent message details will be specified
interactively.

subject is the subject of the message (if applicable). If subject=null,
it defaults to path without the directory component.

In interactive shells, this function is available as send.

// send a script file
files.send(system.docdir+"coolgame.m",

"The cool game I promised")

Series 60 sample screen UIQ sample screen

files.size

• function size(path)→ Number

Permissions: Read(path)

Returns the size in bytes of the file denoted by path. Returns 0 if path
denotes a directory.

print files.size(system.appdir+"Audio_mm.dll")
→ 2956

files.time

• function time(path)→ Number

Permissions: Read(path)

• function time(path, newtime)→ Number

Permissions: Read+Write(path)

m Mobile Shell Library Version 3.00 35

2. Fundamental Modules c© 2008 airbit AG

Gets or sets the time when the file or directory denoted by path has been
created or modified. The time is in seconds since midnight on January
1st of year 0. With one argument, returns the modification time of the
file or directory path. With two arguments, returns the old modification
time, and sets the new time.

print files.time("c:\\documents\\mShell")
→ 63276033444

See also module time (p. 50).

2.4 Module io: File and Stream In-
put/Output

This module provides functions to read and write files or communication
streams via the underlying operating system.

Some of the functions in this module can render a mobile phone
completely unusable, e.g. by overwriting sensitive files. Make sure you
regularly back up your mobile phone, and inform yourself how to reset
your phone to factory status. You have been warned!

Before file operations can be performed, a file has to be opened for
reading or reading and writing. Opening a file returns a stream object
which identifies the file for subsequent operations. When file operations
are completed, the file should be closed4.

// open the standard autoexec.m script
f=io.open(system.appdir + "autoexec.m");
// read the first 28 bytes (characters)
s=io.read(f, 28);
print s;
→ /*

Default autoexec script
// close the file
io.close(f)

4When an m script finishes or is closed, all its open streams are also closed. An
open stream is also closed when it is no longer referenced and reclaimed by the garbage
collector.

36 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.4. Module io: File and Stream Input/Output

There are two special files:

• const stdin = standard input Reads from the console.

• const stdout = standard output Writes to the console5

A file always has a character encoding scheme (CES) it uses when reading
or writing UNICODE R© characters. The following encoding schemes exist:

• const raw = 0

Only the low byte of each character is read or written, the high byte is
assumed zero. The number of bytes written corresponds exactly to the
number of characters. This is a good CES for reading and writing Latin
characters, and the default CES.

• const utf8 = 1

Characters are encoded using UTF-8. This is a compact variable length
encoding properly encoding all characters, but the number of bytes
written is not easily predictable. Reading with the UTF-8 CES throws
ExcInvalidUTF8 if a character sequence not conforming to the UTF-8
standard is encountered.

• const utf16le = 2

Characters are encoded using UTF-16 LE (little endian, low byte first).
Each character is read or written as two bytes, the number of bytes
written is therefore twice the number of characters.

• const utf16be = 3

Like utf16le, but characters are encoded using UTF-16 BE (big endian,
high byte first).

• const bom = 0xfeff

This is a pseudo-encoding scheme which will determine the real scheme
to use depending on the next one to three bytes read. These bytes
are analyzed whether they form a BOM (Byte Order Mark) in any given
encoding. If there is a BOM, the CES will be set accordingly, and actual
reading will start with the data following the BOM. If there is no BOM or
the necessary bytes are not available, the CES will be set to raw.

To write a BOM to a stream s in its current encoding scheme, use the
following statement:

5io.stdin and io.stdin represent the same stream; it exists under two different
names for historical reasons.

m Mobile Shell Library Version 3.00 37

http://www.unicode.org

2. Fundamental Modules c© 2008 airbit AG

if io.ces(s)#io.raw then
io.write(s, char(io.bom))

end

io.append

• function append(path, ces=io.raw)→ Native Object

Permissions: Read+Write(path)

Opens a file to append to it, and returns its stream object. If the file
exists, it is opened for read and write access, and the file pointer is set
to its end. If the file doesn’t exist, this call is equivalent to io.create

(p. 39).

If the file already exists, it is truncated to zero length.

Throws ErrPathNotFound if the directory does not exist.

f=io.append("activity.log");
// file pointer is at the end
print io.size(f), io.seek(f,0,true)
→ 1813 1813
io.close(f)

io.avail

• function avail(stream)→ Number

Returns the number of bytes which can be read without blocking. For
disk files, this is normally the number of bytes to the end of the file.

For io.stdin, this is the number of characters which can be read without
changing to input mode, i.e. calling a reading function: console input is
normally only accepted during a read on io.stdin (when the state
icon is shown). See ui.keys (p. 88) for information on removing this
restriction.

// read all remaining console input
len=io.avail(io.stdin);
s=io.read(io.stdin, len)

38 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.4. Module io: File and Stream Input/Output

io.close

• function close(stream)→ null

Flushes and closes the file stream. Attempts to close io.stdin or
io.stdout are ignored.

See also io.flush (p. 40).

io.ces

• function ces(stream)→ Number

• function ces(stream, scheme)→ Number

Gets or sets the character encoding scheme of a file. With one argument,
returns the current CES of the file stream. With two arguments, returns
the old CES, and sets the CES of stream to scheme.

Throws ErrAccessDenied when attempting to change the CES of
io.stdin or io.stdout.

io.create

• function create(path, ces=io.raw)→ Native Object

Permissions: Write(path)

Creates a new, empty file in the directory and with the name specified
by path, and returns its stream object. The initial CES is set to ces. The
file is opened for read and write access.

If the file already exists, it is truncated to zero length.

Throws ErrPathNotFound if the directory does not exist.

f=io.create("sample.xml", io.utf8);
print f
→ 2
io.close(f)

m Mobile Shell Library Version 3.00 39

2. Fundamental Modules c© 2008 airbit AG

io.flush

• function flush(stream)→ Boolean

• function flush(stream,auto)→ Boolean

With one argument flushes the file stream, i.e. writes any pending data
to the underlying file or communication stream, and returns the auto
flush state.

With two arguments, enables (auto=true) or disables (auto=false)
auto flushing, and returns the previous setting.

If auto flushing is enabled, the file will be flushed after each io.write...

and io.print... call. For optimum performance when writing a lot of
data, auto flushing should be disabled.

If a file has auto flushing enabled, calling io.flush to flush the file is
never required.

By default, auto flushing is enabled.

// disable auto flushing before writing a lot of data
old=io.flush(f, false);
for line in lines do
io.writeln(f, line)

end;
// restore the previous auto flush state
io.flush(f, old)

io.open

• function open(path, rw=false, ces=io.raw)→ Native
Object

Permissions: Read(path) / Read+Write(path)

Opens an existing file in the directory and with the name specified by
path, and returns its stream object. The initial CES is set to ces. If
rw=false, the file is opened for read access, and attempts to write to
it will throw ErrAccessDenied. If rw=true, the file is opened for read
and write access.

Throws ErrPathNotFound if the directory does not exist, and
ErrNotFound if the file does not exist.

40 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.4. Module io: File and Stream Input/Output

f=io.open("sample.xml", false, io.utf8);
print f
→ stream@41255c
io.close(f)

io.print

• function print(stream, expression, ...)→ null

Writes a list of expressions as strings to file stream, using the current
character encoding scheme. The expressions are converted to strings
according to the rules in section 2.7.10 (Reference, p. 30). The strings are
written one after the other, without separators or a terminator string.

old=13;
io.print(io.stdout, "old=", old, ", new: ");
→ old=13, new:

io.println

• function println(stream, expression, ...)→ null

Like io.print, but also writes a newline (CR and LF characters) after
writing all arguments.

io.read

• function read(stream, len)→ String|null

Reads from stream until len characters have been read, or the file end
has been reached, and returns the characters read as a string.

len determines the number of characters read, not the number of bytes:
with encoding schemes different from io.raw, the number of bytes read
may be greater than len.

Advances the file pointer by the number of bytes read. Returns null if
the file pointer is already at the end of stream. Reading from io.stdin

never returns null, as the user is prompted for new data if there is no
data to read.

m Mobile Shell Library Version 3.00 41

2. Fundamental Modules c© 2008 airbit AG

f=io.open("Hello.mp3");
// read first three bytes of MP3 file
print io.read(f, 3);
→ ID3
io.close(f)

See also: .code (p. 8)

io.readln

• function readln(stream, len=256)→ String|null

Reads from stream until len characters have been read, or until the
next end of line has been reached6, and returns the characters read as a
string. The string returned does not contain the end of line mark.

len determines the number of characters read, not the number of bytes:
with encoding schemes different from io.raw, the number of bytes read
may be greater than len.

Advances the file pointer by the number of bytes read. Returns null if
the file pointer is already at the end of stream.

f=io.open(system.appdir + "autoexec.m");
// read the first three lines
for i=1 to 3 do
print io.readln(f)

end
→ /*

Default autoexec script for interactive shells.

(c) 2005 airbit AG, www.airbit.ch
io.close(f)

io.readm

• function readm(stream,old3rd=false)→ anytype

Reads the next m data item from stream, and returns it. The data must
have been written using io.writem (p. 46).

6end of line is marked by CR-LF, LF, or CR.

42 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.4. Module io: File and Stream Input/Output

Advances the file pointer by the number of bytes read.

The current encoding scheme does not affect how the input data is
interpreted.

If old3rd=true, data is assumed to be in the (wrong) format written by
Symbian 3rd Edition devices with m versions prior to 2.01. Under normal
circumstances, this parameter is not used.

Throws ErrEof if end of file is reached during reading. Throws
ErrCorrupt if the data in the file is invalid. Throws ExcNoSuchClass if
the stream contains an instance of a class which is not loaded, i.e. not
known to the current process. Throws ExcUnknownField if a class has
less fields than the instance being read.

Care must be taken when reading class instances which were written
with a different class definition. Class fields are simply written and read
in order declared when the data was written. Fields added to the class
since the data was written are set to null.

See io.writem (p. 46) for an example.

io.seek

• function seek(stream, pos, current=false)→ Number

Sets the file pointer position of file stream to pos. If current=false,
pos is an absolute position and must not be negative. If current=true,
pos is relative to the current position and may also be negative.

The file pointer position is always in bytes, independent of the current
character encoding scheme.

Returns the new absolute file position.

io.seek(f, 0); // seek to beginning of file
io.seek(f, io.size(f)); // seek to end of file
io.seek(f, -40, true)); // rewind 40 bytes
current=io.seek(f, 0, true); // get current position

m Mobile Shell Library Version 3.00 43

2. Fundamental Modules c© 2008 airbit AG

io.size

• function size(stream)→ Number

Returns the size of file stream, in bytes.

See also: files.size (p. 35)

io.timeout

• function timeout()→ Number

• function timeout(ms)→ Number

Gets or sets the timeout used in reads and writes. Without an argument,
returns the current timeout in milliseconds. With one argument, returns
the old timeout, and sets the new timeout to ms. Setting the timeout to
zero (the default) or a negative value disables timeouts, i.e. I/O operations
can block indefinitely.

Throws ExcValueOutOfRange if ms exceeds 2147483 (35 minutes and
47.483 seconds).

The timeout is used in all following reads and writes: whenever an
operation does not complete within the given number of milliseconds, it
throws ErrTimedOut.

// give the user three seconds to input data
io.timeout(3000);
try
s=io.readln(io.stdin)
// process input

catch e by
// if it wasn’t a timeout, rethrow e
if index(e, "ErrTimedOut") # 0 then throw e end;
print "You waited too long..."

end

io.wait

• function wait(streams)→ Native Object

Waits until at least one stream in the array streams has at least one byte
to read from (i.e. io.avail (p. 38) returns a value greater than zero),

44 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.4. Module io: File and Stream Input/Output

and returns this stream.

io.wait is most useful when simultaneously processing several input
streams (TCP/IP, Bluetooth, IPC), as it avoids the need for a ‘‘busy waiting
loop’’. See also module async (p. 209).

ipconn=...
btconn=...
case io.wait([io.stdin, ipconn, btconn])
in io.stdin:
// read from the console

in ipconn:
// read from ipconn

in btconn:
// read from btconn

end

io.write

• function write(stream, string)→ null

Writes the string string to file stream, using the current character
encoding scheme.

f=io.create("sample.txt", io.utf8);
s="un château français";
io.write(f, s);
print len(s), io.size(f)
→ 19 21

io.writeln

• function writeln(stream, string)→ null

Writes the string string, followed by a newline (CR and LF characters)
to file stream, using the current character encoding scheme.

f=io.create("sample.txt", io.utf8);
s="un château français";
io.writeln(f, s);
print len(s), io.size(f)
→ 19 23

m Mobile Shell Library Version 3.00 45

2. Fundamental Modules c© 2008 airbit AG

io.writem

• function writem(stream, data)→ null

Writes data to file stream, so it can be read back in via io.readm

(p. 42). data can have any m type: number, string, boolean, array, or
null. Function references and native objects can neither be written nor
read.

If data is an array, elements of it (or its subarrays) which are referenced
multiple times are only written once and correctly resolved when they
are read back in. This permits to properly write (‘‘serialize’’) recursive
data structures (which in m are always arrays with elements referencing
the array itself).

The current encoding scheme does not affect the raw data written.

Throws ErrArgument if data is of a type which cannot be written.

46 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.5. Module system: System Related Functions

// write a string
data1="Simply a string";
// and a more complex data structure
data2=["One":1, "Two":2.5, false, null, "V":[8,9,10]];
// and a class instance
class C
a b
function init(a, b)
this.a = a; this.b = b

end
end
data3=C("String", 24);
f=io.create("sample.dat");
io.writem(f, data1);
io.writem(f, data2);
io.writem(f, data3);
io.close(f);
// read it back in
f=io.open("sample.dat");
print io.readm(f)
→ Simply a string
a=io.readm(f);
print a, keys(a)
→ [1,2.5,false,null,[...3]] [One,Two,null,null,V]
print io.readm(f)
→ C(a=String,b=24)
io.readm(f)
→ ErrEof thrown

2.5 Module system: System Related Func-
tions

This module provides mainly information about the m runtime system
and the device m is running on. Its functions are not guaranteed to
portable, as they are tied to the Symbian OS platform.

m Mobile Shell Library Version 3.00 47

http://www.symbian.com

2. Fundamental Modules c© 2008 airbit AG

system.gc

• function gc()→ Number

Explicitly request garbage collection, reclaiming unused memory of this
process.

system.hal

• function hal(index)→ Number

• function hal(index, value)→ Number

Obtain device specific information. With one argument, returns the value
of attribute number index. With two arguments, sets the the value of
attribute number index, and returns the old value.

Throws ErrNotSupported if the attribute cannot be read (or modified).

Please refer to Symbian OS documentation for a complete list of at-
tributes. The following table just lists a few:

Index Meaning
5 Machine UID

11 CPU frequency in kHz
31 Display width in pixels
32 Display height in pixels
35 Display colors
68 System language: 1=english, 2=french, 3=german, ...
72 System drive: 0=A:, 1=B:, 2=C:, ...

system.mem

• function mem()→ Number

• function mem(expression)→ Number

The first form returns the size of memory for data used by m, and all its
processes. This includes the 60 to 100 kBytes of application memory.

The second form returns the size of memory allocated to expression,
or what would be reclaimed if expression were no longer used. If
expression is an array or a class instance, this includes the memory
allocated to all elements and fields of the array, recursively.

48 m Mobile Shell Library Version 3.00

http://www.symbian.com

c© 2008 airbit AG 2.5. Module system: System Related Functions

print system.mem()
→ 91984
system.gc(); // collect all garbage
print system.mem(array.create(40, 40, 0))
→ 13964
print system.gc() // reclaim array
→ 13956

system.verbosegc

• function verbosegc()→ Number

• function verbosegc(level)→ Number

Gets and sets the verbosity level of garbage collection:

0 Garbage collection works silently. This is the default.
1 Whenever garbage collection occurs, a short message with

the size of the space reclaimed is printed on the console.
2 Whenever garbage collection occurs, a long message with

the size and number of cells of the space in use and the space
reclaimed is printed, together with the total data memory in
use by m.

system.verbosegc(2);
for i=1 to 5 do
a=array.create(100, 100, 0)

end;
→ GC: used=81K/104, freed=0K/0, total=133K

GC: used=162K/205, freed=0K/0, total=214K
GC: used=162K/205, freed=81K/202, total=214K
GC: used=162K/205, freed=81K/202, total=214K
GC: used=162K/205, freed=81K/202, total=214K

system Constants

• const appdir = c:\system\apps\mShell\|

c:\private\a0002f97\| c:\private\e7e0cab7\

The directory where the application files are stored (of the m shell, or of
the standalone application)

m Mobile Shell Library Version 3.00 49

2. Fundamental Modules c© 2008 airbit AG

• const caps = basic | extended | certified | all

The capabilities granted to this process by the operating system’s security
platform. Most m functions and constants require only basic capabilities.
The exceptions are marked accordingly. See section 6.1 (Reference, p. 67)
for details about capabilities under Symbian OS.

• const dev = Device (version)

The device type and, in parentheses, the manufacturer software version.
If the device name is just a hexadecimal number (e.g. 0x101fb2ae),
please add a bug report citing this number and indicating the device
type.

• const docdir = c:\documents\mShell\| c:\Media

files\document\mShell\

The directory where the current m script (or executable) is stored.

• const mdir = c:\system\apps\mShell\|

c:\resource\apps\mShell\

The directory where the m resource files are stored.

• const os = Symbian | Symbian 3rd

The operating system of the device.

• const platform = S60 | UIQ

The (Symbian) platform of the device.

2.6 Module time: Time and Date Functions

This module provides access to the real time clock. A given point in time
in m is always measured as the number of seconds since the beginning
of year 0 (assuming the Gregorian calendar).

time.dayofweek

• function dayofweek(secs=time.get())→ Number

Gets the day of the week of the point in time defined by secs, according
to the following table:

50 m Mobile Shell Library Version 3.00

http://www.symbian.com

c© 2008 airbit AG 2.6. Module time: Time and Date Functions

0 Monday
1 Tuesday
2 Wednesday
3 Thursday
4 Friday
5 Saturday
6 Sunday

print time.dayofweek()
→ 0
print time.dayofweek(time.num(’2005-05-13’))
→ 4

time.get

• function get()→ Number

Gets the local time in seconds since 0000-01-01 00:00:00. The numeric
resolution is down to microseconds, but the actual resolution may be be
coarser.

print time.get()
→ 63279080895
print str(time.get(), 1, 4)
→ 63279080895.9844

See also: .date (p. 9)

time.set

• function set(secs)→ null

Sets the local time in seconds since 0000-01-01 00:00:00 to secs.

time.set(time.get() + 60*60) // advance by 1 hour

time.num

• function num(text, format="YMDhmst")→ Number

Converts the string text into seconds since 0000-01-01 00:00:00,

m Mobile Shell Library Version 3.00 51

2. Fundamental Modules c© 2008 airbit AG

according to the format format.

The format string defines the order of the date and time parts in text.
Each part finishes if either a character which is not a digit is encountered,
or if the part’s maximum length is reached. The parts are denoted by the
following characters:

Character Max. length Meaning
Y 4 Year.
M 2 Month.
D 2 Day.
h 2 Hour (24 hour representation).
m 2 Minute.
s 2 Second.
t 3 Fraction of a second.

One and two digit years are assumed to be in the 21st century, i.e. 2000
is added to them.

Throws ErrArgument if format contains a character other than those
above.

print time.get(), time.num(date())
→ 63279080895 63279080895
t=time.num("05-03-27")-40*24*3600;
print time.str(t)
→ 2005-02-15 00:00:00
t=time.num(’19:14:18.5’, ’hmst’)+124.7
print time.str(t,’hh:mm:ss:ttt’)
→ 19:16:23.200

See also: time.str (p. 52)

time.str

• function str(secs, format="YYYY-MM-DD hh:mm:ss")→
String

Converts the seconds since 0000-01-01 00:00:00 secs into a string,
according to the format format.

Each character in the format string will be converted into a character in
the resulting string, according to the following table:

52 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.6. Module time: Time and Date Functions

Y Next digit of year
M Next digit of month
D Next digit of day
h Next digit of hour
m Next digit of minute
s Next digit of second
t Next digit of fractions of second

The format is converted from right to left, except for t.

print date(), time.str(time.get())
→ 2005-03-14 18:28:15 2005-03-14 18:28:15
print time.str(time.get(), "hh:mm:ss.ttt")
→ 18:28:15.424
print time.str(time.get(), "DD.MM.YY")
→ 14.03.05

See also: time.num (p. 51), .date (p. 9)

time.utc

• function utc()→ Number

Gets the real time in the UTC (Universal Time Coordinate) time zone. This
equals Greenwich local time, excluding any shift by daylight saving time.

The difference between local time and UTC time is the local time zone:

print time.get() - time.utc()
→ 3600

time.weekofyear

• function weekofyear(secs=time.get())→ Number

Gets the week of the year of the point in time defined by secs. The first
week in the year is the first week having four or more days in the year
defined by secs.

m Mobile Shell Library Version 3.00 53

2. Fundamental Modules c© 2008 airbit AG

print time.weekofyear()
→ 11
print time.weekofyear(time.num(’2005-01-01’))
→ 53

2.7 Module zip: ZIP Archives

This module provides read access to ZIP (PKZIP) archive files. Archive
members are extracted via ordinary stream objects, to be passed to
functions in module io (p. 36).

For instance, the following function extracts all members in a ZIP archive
matching a given pattern into the current directory (the default pattern
extracts all members). Note that the code does not create any required
directories, nor correctly distinguishes between directories and files.

function unzip(name, pattern=null)
z=zip.open(name);
for f in zip.scan(z, pattern) do
print "Extracting",f["name"];
i=zip.extract(z, f["name"]);
o=io.create(f["name"]);
b=io.read(i, 256);
while b#null do
io.write(o, b); b=io.read(i, 256)

end;
io.close(i); io.close(o)

end;
zip.close(z)

end

zip.close

• function close(zipfile)→ null

Closes the ZIP archive zipfile previously opened with zip.open.

54 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 2.7. Module zip: ZIP Archives

zip.extract

• function extract(zipfile, name)→ Native Object

Opens a stream to extract the member name from the ZIP archive
zipfile, and returns it. zipfile must have been previously opened
with zip.open.

name is semi-case sensitive: if a member with the same name observing
case exists, it is returned, otherwise a member with the same name
ignoring case is returned.

Throws ErrNotFound if there is no such member.

The returned stream can be accessed with most functions from module
io (p. 36):

• io.read, io.readln, and io.readm read data,

• io.size gets the total number of bytes,

• io.avail gets the number of bytes remaining,

• io.close closes the stream,

• io.ces gets and sets the character encoding scheme. As with files,
the default is io.raw.

zip.open

• function open(file)→ Native Object

Permissions: Read(file)

Opens the ZIP archive with file name file, and returns an object to
access it. The object should be closed with zip.close if it is no longer
needed.

Throws ErrNotFound if there is no such archive, and ErrCorrupt if the
archive is not valid.

zip.scan

• function scan(zipfile,name=null)→ Array

Scans the ZIP archive zipfile for all members matching name. name is

m Mobile Shell Library Version 3.00 55

2. Fundamental Modules c© 2008 airbit AG

not case sensitive and can contain the wildcards * and ?. If name=null,
all members are returned.

Returns an array with one element for each member found, each element
being an array with the following keys:

Key Meaning Type
name Member name String
size Uncompressed size Integer
csize Compressed size Integer
crc CRC-32 checksum Integer

z=zip.open(’ZipTest.zip’)
for f in zip.scan(z, ’*AudioTest.*’) do
print f

end
→ [tests\AudioTest.mid,1983,510,2487703623]

[tests\AudioTest.mm,2416,952,1954653783]

56 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

3. User Interface

3.1 Module graph: Screen Graphics

This module supports drawing of arbitrary two-dimensional graphic
objects and images from files on the screen. The module has its own
view, which can be shown or hidden under programmatic control. When
shown, it appears on top of the normal console window and hides it.

The view supports two modes: ‘‘console mode’’, with the view covering
the area of the m console, and ‘‘full screen mode’’, with the view
covering the entire screen. The default mode is ‘‘console’’, but it can be
changed any time by graph.full (p. 66).

By default, the drawing area’s size (‘‘canvas’’ size) corresponds to the
console’s size, but it can be changed to any size which fits into memory
via the graph.size (p. 79) function. If the canvas is bigger than the
view, the origin of the view on the canvas can be specified via the
graph.show (p. 78) function.

Graphic objects are drawn on the canvas by calling the corresponding
functions. The canvas is not transferred to screen until graph.show
(p. 78) is called, or the operating system requests redrawing.

Coordinates

Position and size of graphic objects are given by coordinates. This module
supports two modes for specifying coordinates (see also graph.scale

(p. 77)):

• Unscaled, with the unit being a single screen pixel, defining the
area to draw on as a rectangle of integer width and height.
Following conventions for pixel coordinates, y=0 is at the top of
the rectangle, and y increases downwards.

m Mobile Shell Library Version 3.00 57

3. User Interface c© 2008 airbit AG

• Scaled, normalizing the rectangle to draw on as a square with
sides of length 1, and an additional rectangle on the right for
x>1 (typically on Series 60 devices), or at the bottom for y<0

(typically on UIQ devices). Following conventions for mathematical
coordinates, y=0 is at the bottom of the square, and y increases
upwards.

Unscaled (pixels) Scaled (unit square)

(0,h)

(0,0) (w,0)

(0,0)
(1,0)

(0,1)

Drawing coordinates are always relative to the current clipping rectangle.
See also graph.clip (p. 63).

Colors

Colors for the graphic are expressed as RGB, i.e. as the three intensities
of red, green and blue. In m, there are two ways to specify an RGB value:

• As an array of three color intensities between 0 and 1. For instance,
[0.5,0,0.5] specifies a dark magenta (50% red and 50% blue).

• As an integer encoding the three color intensities between 0
and 255 as red shl 16 | green shl 8 | blue. This is typi-
cally written in hexadecimal notation as 0xrrggbb. For instance,
0x800080 is (after rounding) equivalent to [0.5,0,0.5].

Eight standard colors are predefined as module constants:

58 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

• const black = 0x000000

• const white = 0xffffff

• const red = 0xff0000

• const green = 0x00ff00

• const blue = 0x0000ff

• const yellow = 0xffff00

• const cyan = 0x00ffff

• const magenta = 0xff00ff

The view itself has a background color (set via graph.bg (p. 61)), which
initially is white. Graphic items drawn on the background generally have
two colors:

• The pen color defines the color in which lines, texts and outlines
are drawn. It can also be set to false, so no outlines are drawn. It
is initially black, and set via graph.pen (p. 73).

• The brush color defines the color by which areas are filled. It can
also be set to false, so areas are not filled. It is initially false,
and set via graph.brush (p. 62).

Alpha Blending

All drawing operations can optionally be modified such that the item
drawn is blended with the background. Blending is configured by
a parameter α, a number between 0 and 1 indicating to extent the
background image is blended in:

• α = 0: no blending, the background is ignored. This is the default
setting.

• 0 < α < 1: the background is blended in.

• α = 1: the background is completely blended in, i.e. the drawing
operation has no effect.

α is set via graph.alpha (p. 61). Setting it to a value other than 0 causes
a small performance penalty on drawing operations.

m Mobile Shell Library Version 3.00 59

3. User Interface c© 2008 airbit AG

Simple Example

The following example draws the graph of a normal distribution around
the average 0.5, coloring it from almost pure blue to almost pure red,
then blends a black rectangle over it with the text ‘‘sample’’.

// use the normalized 0 to 1 coordinate system
graph.scale(true);
h=0.02;
for x=0.1 to 0.9 by h do
t=-4*(x-0.5); y=math.exp(-t*t)*0.9;
color=[x,0,1-x];
graph.pen(color); graph.brush(color);
graph.rect(x,0.1,h,y)

end;
graph.pen(graph.black);
graph.text(0.1, h, "Value");
graph.text(0.1-h, 0.1, "Frequency", graph.up);
graph.brush(graph.black);
graph.alpha(0.7);
graph.rect(0.2, 0.2, 0.6, 0.2);
graph.pen(graph.white);
graph.alpha(0);
graph.text(0.25, 0.25, "Sample");
graph.show();

60 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

Series 60 sample screen UIQ sample screen

graph.alpha

• function alpha(factor)→ Number

• function alpha()→ Number

Gets or sets the background blending factor α applied to all drawing
operations. With one argument, sets the blending factor, and returns
the old factor. Without arguments, returns the current factor.

α is a value between 0 and 1, inclusive. See section iwref-
sec:alphablending for more information.

// blend all drawing operations with 30%
// of the background
graph.alpha(0.3)

graph.bg

• function bg(color)→ Array

• function bg()→ Array

Gets or sets the background color of the graph view. With one argument,

m Mobile Shell Library Version 3.00 61

3. User Interface c© 2008 airbit AG

sets the background color, and returns the old background color, as an
array of red, green and blue intensities. Without arguments, returns the
current background color.

See section 3.1 (p. 58) for the definition of colors.

// set the background color to a light gray
graph.bg([0.9,0.9,0.9])

graph.brush

• function brush(color)→ Array

• function brush()→ Array

Gets or sets the brush color. This is the color used to fill areas surrounded
by objects. With one argument, sets the brush color or disables it (if
color=false), and returns the old brush color as an array of red, green
and blue intensities, or false if the brush was disabled. Subsequently
added objects will use the new brush color.

Without arguments, returns the current brush color.

By default, the brush is disabled. See section 3.1 (p. 58) for the definition
of colors.

// fill the objects with white
graph.brush(graph.white)

graph.circle

• function circle(x, y, diameter)→ null

Draws a circle in the square defined by the corners (x,y) and
(x+diameter,y+diameter). The outline is drawn with the current
pen color, and the circle is filled with the current brush color.

graph.scale(true);
graph.pen(graph.red);
graph.brush(graph.green); // fill with green
graph.circle(0.5, 0.4, 0.3);
graph.brush(false); // do not fill
graph.circle(0.5, 0.6, 0.3);

62 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

Sample m screen

graph.clear

• function clear()→ null

Fills the entire view with the current background color, as defined by
graph.bg (p. 61).

graph.clip

• function clip()→ Array | null

• function clip(xywh)→ Array | null

Returns the current clipping rectangle, or null if there is no clipping
(default). Without arguments, the clipping rectangle is not modified.

With one argument xywh=[x,y,w,h], the clipping rectangle is set to this
rectangle (scaled if in scaled mode). All subsequent drawing operations
are relative to the upper left (unscaled) or lower left (scaled) corner of
the clipping rectangle.

With one argument xywh=null, the clipping rectangle is removed, and
the drawing origin is set back to the upper left (unscaled) or lower left
(scaled) corner of the canvas.

m Mobile Shell Library Version 3.00 63

3. User Interface c© 2008 airbit AG

// unscaled clipping
graph.scale(false); graph.pen(graph.black);
graph.rect(20, 30, 100, 40);
graph.clip([20, 30, 100, 40]);
graph.text(5, 30, "Unscaled text (will be clipped)");
// scaled clipping
graph.scale(true); graph.pen(graph.red);
print graph.clip(null);
→ [0.0694444444,0.8958333333,0.3472222222,

0.1388888889]
graph.rect(0.2, 0.3, 0.6, 0.1);
graph.clip([0.2, 0.3, 0.6, 0.1]);
graph.text(0.02, 0.02, "Scaled text (will be clipped)");

Sample m screen

graph.ellipse

• function ellipse(x, y, w, h)→ null

• function ellipse(x, y, w, h, alpha, beta)→ null

Draws an ellipse, an arc or a pie slice:

• With four arguments, draws an ellipse into the rectangle with
corner at x,y, width w and height h. The outline is drawn with the
current pen color, and the ellipse is filled with the current brush
color.

• With six arguments and the brush enabled, draws the outline of
a pie slice with the current pen color, and fills it with the current
brush color. The pie is defined by two angles alpha and beta

64 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

measured in degrees from the x axis, on a circle around the center
of the ellipse:

(x,y)

h

w

α

β

• With six arguments and the brush disabled, draws just the arc, i.e.
the part of the pie on the outline of the ellipse.

// draw an elliptic pie, with parallel arcs
percent=[26, 18, 43, 13];
colors=[graph.red,graph.green,graph.blue,graph.yellow];
alpha=0;
for i=0 to len(percent)-1 do
beta=alpha+360*percent[i]/100;
// the pie slice (brush enabled)
graph.pen(graph.black); graph.brush(colors[i]);
graph.ellipse(10, 10, 160, 140, alpha, beta);
// the parellel arc (brush disbled)
graph.pen(colors[i]); graph.brush(false);
graph.ellipse(5, 5, 170, 150, alpha, beta);
alpha=beta

end;
graph.show()

m Mobile Shell Library Version 3.00 65

3. User Interface c© 2008 airbit AG

Sample m screen

graph.font

• function font(font)→ Array

• function font()→ Array

Gets or sets the text font. With one argument, sets the current font, and
returns the old font. Subsequently via graph.text (p. 81) added texts
will use the new font. Without arguments, returns the current font.

The default font is the m console font. See ui.mfont (p. 92) for the
definition of fonts, and graph.text (p. 81) for an example using fonts.

graph.full

• function full()→ Array

• function full(enabled)→ Array

Compatibility of function graph.full

Sony Ericsson phonesa. Restricted menu access

aIn full screen mode, menus can only be accessed with the jog dial. Once activated,
the menu bar will stay on top of the view until graph.show is called again.

Without arguments, returns the size of the view in the current mode,
scaled if in scaled mode.

With one argument, enables (enabled=true) or disables
(enabled=false) full screen mode, and returns the new view size,
scaled if in scaled mode. Note that this does not change the size of the
canvas; the canvas size can only be changed with graph.size (p. 79).

The following function fills the screen (not the canvas) with an ellipse in

66 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

a given color:

function fill(color)
graph.clear();
graph.pen(color); graph.brush(color);
s=graph.full(); // get screen size
graph.ellipse(0, 0, s[0], s[1])

end

m Mobile Shell Library Version 3.00 67

3. User Interface c© 2008 airbit AG

Drawing a red ellipse in console mode just fills the console view, as usual:

graph.full(false);
fill(graph.red);
graph.show()

Series 60 sample screen UIQ sample screen

68 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

Drawing a green ellipse after changing to full screen mode truncates
the ellipse to the console view size (assuming the canvas size wasn’t
changed):

graph.full(true);
fill(graph.green);
graph.show()

Series 60 sample screen UIQ sample screen

m Mobile Shell Library Version 3.00 69

3. User Interface c© 2008 airbit AG

Drawing a blue ellipse after setting the canvas size to the view size fills
the entire screen with the ellipse:

s=graph.full(true);
graph.size(s[0], s[1]);
fill(graph.blue);
graph.show()

Series 60 sample screen UIQ sample screen

graph.get

• function get(x, y)→ Number

• function get(x, y, w)→ Array

• function get(x, y, w, h)→ Array

Gets a pixel, a scan line or a rectangle from the current image.

With two arguments, returns the color of the pixel at (x,y) as a single
integer (see section 3.1 (p. 58)).

With three arguments, returns an array with the pixel colors of the

70 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

horizontal line of length w starting at (x,y).

With four arguments, returns a matrix with the pixel colors of the
rectangle with corner (x,y), width w and height h.

In scaled mode, coordinates and dimensions are scaled.

See also graph.put (p. 74).

graph.hide

• function hide()→ null

Hides the graph view, showing the standard process view, or any previous
view. If the graph view is not shown, this call is ignored.

graph.icon

• function icon(path, transparent=null)→ Native Object

Permissions: Read(path)

• function icon(data, transparent=null)→ Native Object

• function icon(data, maskData)→ Native Object

• function icon(icon)→ Native Object

Creates an icon from an image file, or from color data, and returns the
icon object. Icons may have an optional transparency mask, defining
which pixels are opaque (drawn) and which are transparent (not drawn)
when drawing the icon with graph.put (p. 74).

With a single path argument, loads an image from the file at path, and
returns it as an icon. The image file formats supported vary from device
to device, but usually include BMP, GIF, JPEG and PNG formats. If the
image has transparency information, it is also loaded to define the icon’s
transparency mask. Alternatively, if transparent is a number, all pixels
of this color are assumed transparent.

With a single data argument, the icon’s image is defined by the colors
in data. data is typically a matrix as returned by graph.get (p. 70), but
can also be a single pixel or a scan line. If transparent is a number,
all pixels of this color are assumed transparent. Alternatively, the matrix
maskData can define transparency on a pixel by pixel basis: all black

m Mobile Shell Library Version 3.00 71

3. User Interface c© 2008 airbit AG

(zero) pixels in maskData are assumed transparent. maskData must have
the same dimensions as data.

With a single icon argument, a copy of the icon is created and returned,
e.g. to scale it while still keeping the original.

Use graph.size (p. 79) to obtain the size of an icon, or to rescale it.

Large icons, e.g. those produced by a high resolution camera, consume
considerable memory.

// load the icon
i=graph.icon("mShell.png")
// get its size
graph.size(i)
→ [156,92]
// draw it
graph.put(20,20,i)
// copy the icon
i2=graph.icon(i);
// scale the copy into a 80x80 square and draw it
graph.size(i2,80,80);
graph.put(20,120,i2);
graph.show()

Sample m screen

graph.line

• function line(x1, y1, x2, y2)→ null

Draws a line from (x1,y1) to (x2,y2), using the current pen color.

72 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

// plot a sine wave from 0 to 4 pi
graph.scale(true);
x1=0; y1=0;
for x=0 to 1 by 0.02 do
y=(math.sin(4*math.pi*x)+1)/2;
if x>0 then graph.line(x1,y1,x,y) end;
x1=x; y1=y

end;
graph.show()

Sample m screen

graph.pen

• function pen(color)→ Array

• function pen()→ Array

Gets or sets the pen color. This is the color used to draw the outlines
of objects. With one argument, sets the pen color or disables it (if
color=false), and returns the old pen color as an array of red, green
and blue intensities, or false if the pen was disabled. Subsequently
added objects will use the new pen color.

Without arguments, returns the current pen color.

The default pen color is black. See section 3.1 (p. 58) for the definition
of colors.

// use a slightly dark magenta pen
graph.pen(0xc000c0)

m Mobile Shell Library Version 3.00 73

3. User Interface c© 2008 airbit AG

graph.poly

• function poly(x, y)→ null

Draws a closed polygon following the points given by x and y. x and
y must be two arrays of identical length. The polygon’s edges are
lines from (x[i],y[i]) to (x[i+1],y[i+1]) (0 <= i < len(x) -

1), with the last (closing) line going from (x[len(x)-1],y[len(x)-1])

to (x[0],y[0]). The lines of the polygon are drawn with current pen
color, and the polygon’s interior (or interiors) are filled with the current
brush color.

// draw a blue bowtie, filled with cyan
graph.pen(graph.blue); graph.brush(graph.cyan);
graph.poly([20,150,150,20],[40,140,40,140]);
graph.show()

Sample m screen

graph.put

• function put(x, y, color)→ null

• function put(x, y, icon)→ null

Draws a single pixel, a scan line or a rectangle, or draws an icon.

If color is a number, sets the pixel at (x,y) to the color color.

If color is an array of numbers, sets the pixels from (x,y) to
(x+len(color)-1,y) to the colors in color.

If color is a matrix of numbers, sets the rectangle with upper left corner

74 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

(x,y), height len(data) and width len(data[0]) to the colors in
color.

If the third parameter is an icon, draws icon with upper left corner
(x,y). If the icon has a mask, only opaque pixels are drawn.

In scaled mode, (x,y) are scaled, but always define the upper left corner
of the rectangle.

Current pen and brush color do not affect what is being drawn.

A graph.put example drawing single points:

// plot a sine wave with single red points
graph.bg([0.8,1,0.8]); graph.clear();
graph.scale(true);
for x=0 to 1 by 0.01 do
y=(math.sin(4*math.pi*x)+1)/2;
graph.put(x,y,graph.red)

end;
graph.show()

Sample m screen

A graph.put example drawing icons, with and without transparent

m Mobile Shell Library Version 3.00 75

3. User Interface c© 2008 airbit AG

background:

// Draw a blue ellipse
graph.brush(graph.blue);
graph.ellipse(0,0,60,40)
// Copy the ellipse and replicate it
data=graph.get(0,0,60,40);
for i=0 to 3 do
graph.put(40*i,30*i,data)

end;
// The entire rectangle is overwritten
graph.show()
// Create an icon, making white transparent
icon=graph.icon(data, graph.white);
graph.clear()
// Replicate the icon
for i=0 to 3 do
graph.put(40*i,30*i,icon)

end
// Only non-white pixels are overwritten
graph.show()

graph.rect

• function rect(x, y, w, h)→ null

Draws a rectangle between the corners (x,y) and (x+w,y+h). The

76 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

outline is drawn with the current pen color, and the rectangle is filled
with the current brush color.

rect(x,y,w,h) produces the same as
poly([x,x+w,x+w,x],[y,y,y+h,y+h]).

graph.save

• function save(path)→ null

Permissions: Write(path)

• function save(path, x, y, w, h)→ null

Permissions: Write(path)

Saves the image produced by drawing to the file given by path. With
one argument, saves the whole image. With five arguments, saves only
the rectangle between the corners (x,y) and (x+w,y+h).

The desired image file format is determined from the image file suffix.
Supported file suffices are .gif (GIF format), .jpg (JPEG format) and
.png (PNG format).

Compatibility of saving to PNG
Sony Ericsson phones ErrNotSupported

// save the entire drawing to rates.jpg
graph.save("rates.jpg");
// save only the upper right quadrant to d:\rates.gif
graph.scale(true);
graph.save("d:\rates.gif", 0.5, 0.5, 0.5, 0.5)

graph.scale

• function scale(scaled)→ Boolean

• function scale()→ Boolean

Gets or sets the current scaling mode. With one argument, sets the
scaling mode to scaled, and returns the old scaling mode. Without an
argument, returns the current scaling mode.

For information about scaling, see section 3.1 (p. 57).

m Mobile Shell Library Version 3.00 77

3. User Interface c© 2008 airbit AG

graph.screen

• function screen()→ Native Object

• function screen(x, y, w, h)→ Native Object

Permissions: ReadApp

Produces an icon of the image (or a portion of it) on the device screen
and returns it. If m is running in the background, this takes a device
screen shot.

Without arguments, the icon will contain the entire screen image. With
four arguments, only the rectangle between screen coordinates (x,y)

and (x+w,y+h) will be copied. In scaled mode, x, y, w and h are scaled.

// make the canvas as large as the screen
graph.size(graph.full(true));
// take a screen shot and save it to screen.gif
i=graph.screen();
graph.put(0,0,i);
graph.save("screen.gif");

graph.show

• function show()→ null

• function show(x, y)→ null

Shows the graph view, hiding the standard process view, and draws all
objects added so far. If the graph view is already shown, it is redrawn.

With two arguments, also aligns the origin of the graph view with point
(x,y) of the the canvas. In unscaled mode, the origin of the view
is in its upper left corner, and graph.show(0,0) aligns the upper left
corner of the canvas with it. In scaled mode, x and y are scaled, and
graph.show(0,0) aligns the lower left corner of the view with the lower
left corner of the canvas.

78 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

// get the original size and create a canvas of 480x320
s=graph.size(480, 320)
// draw a red circle on it
graph.brush(graph.red);
graph.ellipse(10, 10, 460, 300)
// show its upper left quadrant
graph.show(0, 0)
// show its lower right quadrant
graph.show(480-s[0], 320-s[1])

graph.size

• function size()→ Array

• function size(icon)→ Array

• function size(text, bounds=false)→ Array

• function size(wh)→ Array

• function size(w, h)→ Array

• function size(icon, scale)→ Array

• function size(icon, w, h)→ Array

Without arguments, returns the size (width and height) of the draw-
able area. The drawable area includes all the points in the rectangle
between (0,0) and (graph.size()[0], graph.size()[1]). In un-
scaled mode, graph.size() returns the width and height as number of
pixels. In scaled mode, one of width or height will always be one.

m Mobile Shell Library Version 3.00 79

3. User Interface c© 2008 airbit AG

With one icon argument, returns the size (width and height) of the icon.

With one text argument and an optional boolean argument, returns
returns the size (width and height) of the text if it were drawn using the
current font. If bounds=true, the size of the bounding box around the
text is returned, considering the actual ascents and descents in the text.
If bounds=false, the height returned only depends on the font and can
thus be used to vertically align chunks of text.

With one array argument wh=[w,h] or two numeric arguments w and h,
sets the size of the canvas to width w and height h, and returns the size
of the old canvas (initially, the size of the canvas matches the size of the
view). In unscaled mode, w and h are measured in pixels. In scaled mode,
w and h are resizing factors (relative to the current size), and the scale
is recalculated. See graph.show (p. 78) for an example using a canvas
larger than the view.

With two arguments icon and a scale, scales the icon icon by the
factor scale. Returns the old size (width and height) of the icon.

With three arguments, scales the icon icon to the width w and height h.
Returns the old size (width and height) of the icon.

// get unscaled and scaled sizes
graph.scale(false);
print graph.size()
→ [208,227]
graph.scale(true);
print graph.size()
→ [1,1.0913461538]
// draw text centered in a red rectangle
text="Alarm"; x=0.5; y=0.2; w=0.6; h=0.2;
graph.brush(red); graph.rect(x, y, w, h);
s=graph.size(text);
graph.text(x+(w-s[0])/2,y+(h-s[1])/2,text);
graph.show()

80 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.1. Module graph: Screen Graphics

Sample m screen

graph.text

• function text(x, y, text, direction=0)→ null

Draws text starting (the baseline of the first character) at point (x,y)
using the current font. Text can be drawn horizontally or vertically:

• If direction=0, text is drawn horizontally.

• If direction>0, text is drawn vertically going up.

• If direction<0, text is drawn vertically going down.

Two indicate the direction, two constants are defined:
• const up = 1 For vertical text going upwards.
• const down = -1 For vertical text going downwards.

graph.pen(0x800080);
graph.text(50,70,"mShell");
graph.text(50,70,"mShell",graph.up);
old=graph.font(["SwissA", 24, true, false]);
graph.pen(0x808000);
graph.text(50,90,"mShell");
graph.text(50,90,"mShell",graph.down);
graph.font(old);
graph.show()

m Mobile Shell Library Version 3.00 81

3. User Interface c© 2008 airbit AG

Sample m screen

3.2 Module ui: User Interface Functions

This module provides functions to display standard dialogs and menus
and to modify the m user interface.

ui.busy

• function busy(activity)→ null

• function busy()→ null

With one argument, shows a popup window with the text activity,
indicating that something is going on. Without an argument, discards
the popup window.

Both calls return immediately.

ui.busy("Wait five seconds"); // show a popup window
sleep(5000);
ui.busy() // discard the window

82 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.2. Module ui: User Interface Functions

Series 60 sample screen UIQ sample screen

ui.cmd

• function cmd(timeout=-1)→ Number|String|Array|null

This function waits for a user command or action:

• A key press, release, or complete keystroke: the function returns
the positive scan code for a key press, the negative scan code for a
release, or the key code for a keystroke.

For characters, both scan codes and key codes typically correspond
to their UNICODE R© number, and can thus be converted with .char

(p. 8). Codes for navigation and system keys are device specific.
Some important keys are defined as constants (see 3.2 (p. 97)).

ui.keys (p. 88) must have been called before to declare interest
in such keyboard input.

• A script specific menu command being selected by the user: the
function returns the corresponding string from the menu.

ui.menu (p. 91) must have been called before to set up the menu.

• The user touches the screen with the pointing device or moves it:
the function returns an array with the following elements:

Key Meaning
x x-coordinate of pointer
y y-coordinate of pointer
buttons mask of pressed buttons: bit 0 for button 1, bit

1 for button 2, bit 2 for button 3.

ui.ptr (p. 95) must have been called before to declare interest in
such pointer input.

m Mobile Shell Library Version 3.00 83

http://www.unicode.org

3. User Interface c© 2008 airbit AG

If a monitored user action (keystroke, menu selection, pointing) occurred
before ui.cmd is called, it immediately returns the corresponding result.

If timeout>=0 and timeout milliseconds have passed without response
from the user, null is returned. Throws ExcValueOutOfRange if ms

exceeds 2147483 (35 minutes and 47.483 seconds).

Keyboard, menu and pointer can all be monitored together in a single
ui.cmd call.

See ui.keys (p. 88) for an example using the keyboard, ui.menu (p. 91)
for an example using menus, ui.ptr (p. 95) for an example using the
pointer.

ui.confirm

• function confirm(question, title="mShell")→ Boolean

Shows a simple dialog displaying question in a dialog with title title.
The dialog asks the user for confirmation, presenting two buttons or soft
keys with the options ‘‘yes’’ and ‘‘no’’.

Returns true if the user answers ‘‘yes’’, and false if the user answers
‘‘no’’.

name="labels.txt";
if ui.confirm("Really delete " + name + "?") then
files.delete(name)

end

Series 60 sample screen UIQ sample screen

84 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.2. Module ui: User Interface Functions

ui.error

• function error(message)→ null

Displays a dialog with the error message, waiting until the user presses
the ‘‘continue’’ button or a key.

adr="ma@dalton-brothers.com";
ui.error("Something went wrong.\nPlease e-mail " + adr)

Series 60 sample screen UIQ sample screen

ui.fonts

• function fonts()→ Array

Gets an array with the available fonts. Each font is described by a four
element array:

Index Content Type
0 Font name String

1 Minimum font size in pixels Number

2 Maximum font size in pixels Number

3 Font is scalable Boolean

print ui.fonts()[0]
→ SwissA,10,19,false

m Mobile Shell Library Version 3.00 85

3. User Interface c© 2008 airbit AG

ui.form

• function form(items, title="mShell")→ Array|null

Compatibility of function ui.form

Nokia phones silently ignore the title parameter.

Displays a dialog to edit the data in items, with the given title. The
keys of items will be used as labels (prompts) in the form. Array elements
without a key are shown as read-only texts.

The following data types can be edited:

Data Type Field Type
String without \n Single line text editor
String with \n Multi-line text editor
String with trailing ui.secret Password editor indexsecret editor
Number Number editor (floating point)
Boolean Check box or popup yes/no choice
Array Combo box or popup multiple choice

For the multi-line and secret editors, a terminating \n or ui.secret will
be removed, so an empty multi-line field is defined by a single newline
character, and an empty secret field by ui.secret.

The initial values shown in the form are the values given in items, except
for an array value, where initially the first array element is selected.

If the user presses Ok’, this function returns an array with the values
entered or chosen by the user. If the user presses Cancel, null is
returned.

old=["Name":"",
"Details:", // just a label
"Age":32,
"Member":false,
"Beverage":["Water", "Beer", "Wine", "Whiskey"],
"Comment":"\n"]; // a multiline field

new=ui.form(old, "Member Card");
print new
→ [Lucky Luke,35,false,Beer,He’s a poor,

lonesome cowboy]
print keys(new)
→ [Name,Age,Member,Beverage,Comment]

86 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.2. Module ui: User Interface Functions

Series 60 sample screen UIQ sample screen

A typical username/password dialog is obtained as follows:

old=["Username":"", "Password":ui.secret];
new=ui.form(old, "Login");
print new
→ [lluke,rosinante]

Series 60 sample screen UIQ sample screen

m Mobile Shell Library Version 3.00 87

3. User Interface c© 2008 airbit AG

ui.idletime

• function idletime(reset=false)→ Number

Returns the number of milliseconds since the last user activity (keypress
or pointer action) on the device. If reset=true, resets the inactivity
timer to zero.

// after about a minute of inactivity, beep
sharp=false;
while true do
if ui.idletime() < 60000 then
sharp=true

elsif sharp then
audio.beep(); sharp=false

end;
sleep(2000)

end

ui.keys

• function keys(pressAndRelease,allowFocus=false)→ null

• function keys()→ null

Declares interest in keyboard events, for processing by ui.cmd (p. 83).
Whenever the user performs a keyboard action, the scan code or key
code will be returned by the currently waiting or a next call to ui.cmd.

If pressAndRelease=false, ui.cmd will return key codes for complete
keystrokes.

If pressAndRelease=true, ui.cmd will return positive scan codes for
key presses and negative scan codes for key releases (each keystroke
typically produces two events).

If allowFocus=true, the console will obtain the keyboard focus, letting
it interpret keystrokes:

• On UIQ devices, the virtual keyboard will be active, and writing a
character with the pen will also produce a keystroke.

• On Series 60 devices, the keys will be interpreted as if writing a
text.

88 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.2. Module ui: User Interface Functions

Keyboard events will be ignored by ui.cmd after calling ui.keys without
arguments.

Each call to ui.keys flushes the internal keyboard buffer.

The following example outputs keystrokes until the ‘‘go’’ key is pressed.

ui.keys(false); // return keystrokes
do
c=ui.cmd();
print "pressed",c,"=",char(c)

until c=ui.gokey
→ pressed 55 = 7

pressed 42 = *
pressed 63557 =

ui.large

• function large()→ Boolean

• function large(enabled)→ Boolean

Compatibility of function ui.large

Sony Ericsson phones UI size change is not possi-
ble; function always returns
false.

Without arguments, returns the current m application view size: false
if the view size is small (title pane shown), true if the view size is large
(title pane hidden).

With one argument, return the current view size, and sets the new
view size: with enabled=true, changes the view size to large, with
enabled=false, changes the view size to small. This has the same
effect as toggling the view size from the menu: it changes the view size
for the entire m application, in all processes.

m Mobile Shell Library Version 3.00 89

3. User Interface c© 2008 airbit AG

ui.list

• function list(items, multiple=false, init=[],
title="mShell")→ Array|null

Displays a list dialog to choose from the data in items:

• If multiple=false, only one item can be selected. This is usually
simply the highlighted (current) item.

• If multiple=true, multiple items can be selected. These are
usually the marked items.

Initially, the items indexed in init will be selected (or marked).

If the user presses ‘‘ok’’, this function returns the indices of the items
selected by the user, i.e. an array of numbers indexing into items. If the
user presses ‘‘cancel’’, null is returned.

title is not supported on Nokia devices and silently ignored.

f=["apple.jpg", "apricot.jpg", "peach.jpg",
"pear.jpg", "prune.jpg"];

print ui.list(f, true, [1,3], "Fruit Files")
→ [2,3]

Series 60 sample screen UIQ sample screen

90 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.2. Module ui: User Interface Functions

ui.menu

• function menu(title, commands, keepold=true,
interrupt=false)→ null

• function menu()→ null

Replace the standard ‘‘Process’’ menu by a new menu, with title and
the menu items defined by array commands, for processing by ui.cmd

(p. 83).

If keepold=true, the standard process menu will be added at the end, as
a submenu. If keepold=false, the standard functions are not available,
preventing the user from easily stopping or closing the running process.

If interrupt=true, a menu selection by the user will interrupt a
waiting function call (except ui.cmd) with ExcInterrupted. If
interrupt=false, function calls will not be interrupted, and the menu
selection will go unnoticed until ui.cmd is called.

Without arguments, restores the standard menu.

Whenever the user selects a menu item, the item will be returned by the
currently waiting or the next call to ui.cmd (p. 83).

ui.menu("Colors", ["Red", "Green", "Blue", "End"]);
while true do
c=ui.cmd();
if c="End" then break end;
print c,"chosen"

end

m Mobile Shell Library Version 3.00 91

3. User Interface c© 2008 airbit AG

Series 60 sample screen UIQ sample screen

ui.mfont

• function mfont()→ Array

• function mfont(font)→ Array

Gets or sets the font used in all m consoles. Without parameter, returns
the currently used font as an array with the following elements:

Index Meaning Type
0 Font name String

1 Font size in pixels Number

2 Bold font Boolean

3 Italic font Boolean

If the parameter font is a string, set the font to the one with the given
name, without changing the other attributes.

If the parameter font is an array, the array must have the elements listed
above, and the font is set accordingly.

92 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.2. Module ui: User Interface Functions

old=ui.mfont();
print old
→ [Monospace,11,false,false]
// use a proportional sans serif font
ui.mfont("SwissA");
// make it large and bold
ui.mfont(["SwissA", 16, true, false])

ui.mode

• function mode()→ Number

• function mode(newmode)→ Number

Compatibility of function ui.mode

Symbian 2nd Edition or Sony Erics-
son phones

Only support mode 0.

Gets or sets the screen / user interface orientation mode.

Without an argument, returns the current mode. With a single argument,
sets the mode to newmode and updates the user interface accordingly.

The following modes are available:

Value Description
0 Unspecified: the screen mode of m follows the orientation

implied by the device (e.g. flip open or closed).
1 Portrait: m is always shown in portrait mode.
2 Landscape: m is always shown in landscape mode.

Throws ExcValueOutOfRange if the desired mode is not supported.

// force mode to landscape
ui.mode(2)

ui.msg

• function msg(message, title="mShell")→ null

Displays a dialog with message, waiting until the user presses the
‘‘continue’’ button or a key. message can have multiple lines, separated
by \n characters.

m Mobile Shell Library Version 3.00 93

3. User Interface c© 2008 airbit AG

ui.msg
("This is - for a cellphone - quite a long message."
+ "\nIt also has a second line.",
"Long message");

Series 60 sample screen UIQ sample screen

ui.pfonts

• function pfonts()→ null

Prints a table of the available fonts, with the following columns:

• Font name.

• Minimal and maximal size in pixels, separated by -.

• Number of scaling steps from minimal to maximal size, prefixed by
x.

• Font attributes: p: proportional, s: serif, y: symbol, S: scalable.

ui.pfonts()
→ SwissA 10-19x4 p---

Courier 8- 8x1 -s--
Symbol 11-16x2 p-y-
Calc 13-35x3 --y-
Eikon 15-15x1 --y-
Calcinv 14-14x1 --y-
Digital 35-35x1 --y-

94 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.2. Module ui: User Interface Functions

ui.ptr

• function ptr(absoluteCoord)→ null

• function ptr()→ null

Declares interest in pointer events, for processing by ui.cmd (p. 83).
Whenever the user performs a pointing device action, the pointer coor-
dinate and button will be returned by the currently waiting or a next call
to ui.cmd.

To generate these events, there must be a pointing device: on UIQ
devices, the pen corresponds to button one. However, unlike a mouse,
the pen only generates events while button is pressed, i.e. the pen
touches the screen1.

If absoluteCoord=true, ui.cmd will return absolute coordinates (the
origin is the upper left corner of the screen).

If absoluteCoord=false, ui.cmd will return relative coordinates (the
origin is the upper left corner of the console, or graph view).

Pointer events will be ignored by ui.cmd after calling ui.ptr without
arguments.

The following example outputs the position of the pointing device, until
the pen goes up (button one is no longer pressed) in the upper left corner
of the console.

ui.ptr(false); // return relative coordinates
do
c=ui.cmd();
print "at",c["x"],c["y"]

until c["x"]<=10 and c["y"]<=10 and c["buttons"]=0
→ at 123 116

at 123 146
at 91 142
...
at 11 7
at 8 7
at 7 7

1mVNC has limited support for the Series 60 pointer via the mouse.

m Mobile Shell Library Version 3.00 95

3. User Interface c© 2008 airbit AG

ui.query

• function query(prompt, title="mShell", value="")→
String|Number|null

Displays a dialog querying for a single text input. The input field is
initialized with value, and labelled with prompt.

If value is a number, the input field is numeric and does not allow non-
numeric characters. The only valid characters are 0123456789-+,.Ee.
The return value will also be numeric in this case. The function throws
ExcInvalidNumber if the format of the number entered is not valid.

If the user presses ‘‘ok’’, this function returns the value entered by the
user. If the user presses ‘‘cancel’’, null is returned.

The same effect can be achieved with ui.form (p. 86), but ui.query is
simpler to use.

old="labels.txt";
new=ui.query("New name", "Rename", old);
if new#null and new#old then
files.rename(old, new)

end

Series 60 sample screen UIQ sample screen

ui.save

• function save(path)→ null

Permissions: Write(path)

Saves the current contents of the console to file path. This has the same

96 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 3.3. Module vibra: Vibration Control

effect as manually executing Process→Save Output, except that path is
relative to the current directory of the process.

The text is written using the current source file encoding.

print "Hello world";
→ Hello world
ui.save("output.txt");
print io.readln(io.open("output.txt", false, io.bom))
→ Hello world

ui Constants

These constants define the key codes (for keystrokes) of the navigation
keypad typically found on Nokia phones, and the Jog Dial on Sony
Ericsson phones.

• const downkey = down key code The ‘‘down’’ navigation key.

• const downkey2 = other down key code On UIQ devices, the
four way ‘‘down’’ navigation key; on S60 devices, same as ui.downkey.

• const gokey = go key code The ‘‘go’’ or ‘‘confirm’’ navigation
key.

• const leftkey = left key code The ‘‘left’’ navigation key.

• const rightkey = right key code The ‘‘right’’ navigation key.

• const secret = "\u0001" The secret input field mark.

• const upkey = up key code The ‘‘up’’ navigation key.

• const upkey2 = other up key code On UIQ devices, the four
way ‘‘up’’ navigation key; on S60 devices, same as ui.upkey.

3.3 Module vibra: Vibration Control

Compatibility of module vibra

Nokia phones before Symbian 8a Internal Error

aSee also Forum Nokia, Developer Platform 2.0: Known Issues, 5.13

This module provides simple functions to control the device vibration

m Mobile Shell Library Version 3.00 97

3. User Interface c© 2008 airbit AG

feature of some devices.

vibra.off

• function off()→ null

Turns the vibration off. If the device is not vibrating, the call is ignored.

vibra.on

• function on(duration=0)→ null

Turns the vibration on for the specified duration (in milliseconds). If
duration=0, vibration is turned on until vibra.off (p. 98) is called.

This function returns immediately, before the specified time has passed.

Throws ExcValueOutOfRange if the duration is outside the valid range
(0 to 65535).

// vibrate for one second:
vibra.on(1000)
// another way to vibrate for one second:
vibra.on();
sleep(1000);
vibra.off()

98 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

4. Mathematics

4.1 Module bigint: Arbitrarily Large Inte-
gers

This module supports calculations with big integers. The maximum (or
minimum) value for a big integer is limited only by available memory. All
calculations are performed with full precision.

Big integers are native objects. Three functions convert between big
integers and other representations:

• bigint.new (p. 102) creates a new big integer from a number, a
string (in a given base, e.g. hexadecimal), or another big integer.

• bigint.num (p. 102) converts a big integer to a number (potentially
loosing significant digits).

• bigint.str (p. 103) converts a big integer to a string encoded in
a given base.

The big integer arguments of all functions can also be specified as a
number or as a string encoding a decimal number:

a=bigint.mul("33333333333333333333333333333333333", -2);
print a, bigint.str(a)
→ bigint@414ffc -66666666666666666666666666666666666

bigint.abs

• function abs(p)→ Native Object

Computes the absolute value of p as a big integer.

m Mobile Shell Library Version 3.00 99

4. Mathematics c© 2008 airbit AG

r=bigint.abs("-314159265358979323846264");
print bigint.str(r)
→ 314159265358979323846264

bigint.add

• function add(p, q)→ Native Object

Computes the sum of p and q as a big integer.

r=bigint.add("123456789012345678901234567890",
8765432110);

print bigint.str(r)
→ 123456789012345678910000000000

bigint.cmp

• function cmp(p, q)→ Number

Compares p and q:

• Returns -1 if p < q.

• Returns 0 if p = q.

• Returns 1 if p > q.

p=bigint.new("100000000", 16);
q=bigint.new(4294967296);
print bigint.cmp(p, q)
→ 0

bigint.div

• function div(p, q)→ Native Object

Computes the quotient of p and q as a big integer. Throws
ErrDivideByZero if q=0.

100 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 4.1. Module bigint: Arbitrarily Large Integers

r=bigint.div("123456789012345678901234567890",
1234567890);

print bigint.str(r)
→ 100000000010000000001

bigint.mod

• function mod(p, q)→ Native Object

Computes the remainder of p and q as a big integer. Throws
ErrDivideByZero if q=0.

r=bigint.mod("123456789012345678901234567893",
1234567890);

print bigint.str(r)
→ 3

bigint.mul

• function mul(p, q)→ Native Object

Computes the product of p and q as a big integer.

p=bigint.new(333333333333333);
r=bigint.mul(p, p);
print bigint.str(r)
→ 111111111111110888888888888889

bigint.neg

• function neg(p)→ Native Object

Computes the value of p with sign changed.

r=bigint.neg("314159265358979323846264")
print bigint.str(r)
→ -314159265358979323846264

m Mobile Shell Library Version 3.00 101

4. Mathematics c© 2008 airbit AG

bigint.new

• function new(p)→ Native Object

• function new(string, base=10)→ Native Object

Creates a new big integer with the value of p. p can be:

• Another big integer. In this case a copy of p is returned.

• A number. Digits after the decimal points are ignored, and for
values outside the range −263 to +263 − 1, the result is undefined.

• A string encoding an integer in the given base. Valid bases are in
the range 2 (binary) and 36 (using letters A to Z and a to z for
digits 11 to 36).

Leading and trailing blanks in the string are ignored.

Throws ErrArgument if the base is out of range or the string
contains invalid characters.

m=bigint.new(-18513.7);
print bigint.str(m)
→ -18513
m=bigint.new("ffffffffffffffff", 16);
print bigint.str(m, 4)
→ 33333333333333333333333333333333

bigint.num

• function num(p)→ Number

Converts the big integer p to a number. If p is outside the range −263 to
+263 − 1, the result is undefined.

r=bigint.div("12345678901234567890", 1234567890);
print bigint.num(r) / 2
→ 5000000000.5

102 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 4.1. Module bigint: Arbitrarily Large Integers

bigint.pow

• function pow(p, q)→ Native Object

• function pow(p, q, m)→ Native Object

Efficiently computes pq as a big integer. With three arguments, computes
the remainder of dividing pq by m.

Throws ErrArgument if q<0. Throws ErrDivideByZero if m=0.

// perform RSA encryption with a 256-bit key
e=bigint.new("7715580902129052762255348495586732516285"+

"0754331340849769128881931930089847467");
m=bigint.new("1157337135319357914338302274338009877449"+

"56524669244552124759012865929681230709");
c=bigint.pow("3695195570339388218205223153428883192073"+

"329889262155589752278898769206369823",
e, m);

print bigint.str(c)
→ 2090963726256956961627254580276511758392932630933805

1745096332980705650678328

bigint.str

• function str(p, base=10)→ String

Converts the big integer p to a string in the given base. Valid bases are
in the range 2 (binary) and 36 (using letters a to z for digits 11 to 36).

// convert a large decimal to a large hexadecimal number
s=bigint.str("123456789012345678901234567890", 16);
print s
→ 18ee90ff6c373e0ee4e3f0ad2

bigint.sub

• function sub(p, q)→ Native Object

Computes the difference of p and q as a big integer.

m Mobile Shell Library Version 3.00 103

4. Mathematics c© 2008 airbit AG

r=bigint.sub("123456789012345678901234567890",
-8765432110);

print bigint.str(r)
→ 123456789012345678910000000000

4.2 Module math: Mathematical Functions

This module provides standard mathematical functions.

math.abs

• function abs(x)→ Number

Returns the absolute value of x.

math.acos

• function acos(x)→ Number

Returns the arcus cosine (in radians) of x.

Throws ErrArgument if abs(x) > 1.

math.asin

• function asin(x)→ Number

Returns the arcus sine (in radians) of x.

Throws ErrArgument if abs(x) > 1.

math.atan

• function atan(x)→ Number

Returns the arcus tangent (in radians) of x.

104 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 4.2. Module math: Mathematical Functions

math.ceil

• function ceil(x)→ Number

Returns the smallest integer greater than or equal to x.

print math.ceil(3)
→ 3
print math.ceil(3.4)
→ 4
print math.ceil(-3.4)
→ -3

math.cos

• function cos(x)→ Number

Returns the cosine of x (in radians).

math.exp

• function exp(x)→ Number

Returns ex

math.floor

• function floor(x)→ Number

Returns the largest integer less than or equal to x.

print math.floor(3)
→ 3
print math.floor(3.4)
→ 3
print math.floor(-3.4)
→ -4

m Mobile Shell Library Version 3.00 105

4. Mathematics c© 2008 airbit AG

math.log

• function log(x)→ Number

Returns the natural logarithm of x.

math.pow

• function pow(x, y)→ Number

Returns xy.

Throws ErrArgument if x < 0 and y is not an integer.

Throws ErrOverflow if x = 0 and y < 0.

print math.pow(2, 0.5)
→ 1.4142135624
print math.pow(-5, 3);
→ -125

math.random

• function random()→ Number

• function random(seed)→ Number

Returns a random number uniformely distributed in the interval 0 (in-
clusive) to 1 (exclusive). With an argument, initializes the sequence of
random numbers with seed. seed can be any number.

The default initialization is based on the current time.

math.random(0);
for i=1 to 3 do
print math.random()

end
→ 0.0038488093

0.6952766137
0.2338878537

106 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 4.2. Module math: Mathematical Functions

math.round

• function round(x, decimals=0)→ Number

Rounds x to decimals decimal digits.

print math.round(4.5)
→ 5
print math.round(math.pi, 4)
→ 3.1416

math.sin

• function sin(x)→ Number

Returns the cosine of x (in radians).

math.sqrt

• function sqrt(x)→ Number

Returns the square root of x.

Throws ErrArgument if x < 0.

math.tan

• function tan(x)→ Number

Returns the tangent of x (in radians).

math.trunc

• function trunc(x)→ Number

Returns the integral part of x.

print math.trunc(3)
→ 3
print math.trunc(3.4)
→ 3
print math.trunc(-3.4)
→ -3

m Mobile Shell Library Version 3.00 107

4. Mathematics c© 2008 airbit AG

math Constants

• const e = 2.718281828459045 Euler constant.

• const pi = 3.141592653589793 π.

108 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

5. Personal Data

5.1 Module agenda: Agenda Database

This module allows to read and manipulate the agenda (calendar and
to-do list) stored on the phone. There are different types of agenda
entries, each type identified by its flag:

• Appointment (agenda.appt flag): an entry starting at a date and
time and ending on the same day, e.g. a team meeting.

• Event (agenda.event flag): an entry starting at a date and ending
on a date, e.g. holidays.

• Anniversary (agenda.anniv flag): an entry occuring at a date, with
an optional base year (e.g. the year of birth).

• To-do list item (agenda.todo flag): an entry with a due date and
a priority. When done, it also gets a done (‘‘crossed out’’) date.

The standard calendar application on the phone often does not support
all entry types and attributes.

In the phone’s database, an agenda entry is identified by its id, an integer
number.

Agenda Fields

In m, an agenda entry is represented as an array whose elements are the
fields of the entry. Fields are identified by their (array) keys. m recognizes
the following keys, with the corresponding data type:

m Mobile Shell Library Version 3.00 109

5. Personal Data c© 2008 airbit AG

Key Meaning Type Used in

a
p
p
t

e
v
e
n
t

a
n
n
i
v

t
o
d
o

alarm Alarm date/time Seconds × × × ×
base Base year Integer ×
done Done date Seconds ×
end End date/time Seconds × × ×
flags Entry flags (see below) Integer × × × ×
loc Location String × × × ×
prio Priority Integer ×
rep Repeat details (see below) Array × × × ×
start Start date/time Seconds × × × ×
text Entry text String × × × ×

Key names are not case sensitive.

All dates and times of an entry are represented as seconds since the start
of year zero in local time (see also module time (p. 50)). Valid dates are
January 1st, 1980 or 1900 to December 31st, 2100. The functions of
this module throw ExcValueOutOfRange if a date outside this range is
used. The only exception is the base year (base) of an anniversary entry,
which is simply an integer indicating any year.

The order of fields in the array describing an entry is arbitrary. Arrays
returned by functions in this module always start with the two fields
text and flags.

Agenda Entry Flags

The flags field is a bitwise combination of the following values:

• const anniv = 4 Entry is an anniversary.

• const appt = 1 Entry is an appointment.

• const done = 32 To-do entry is done.

• const event = 2 Entry is an event.

• const rep = 16 Entry is repeated.

• const remind = 64 Entry is a reminder.

• const todo = 8 Entry is a to-do list item.

110 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 5.1. Module agenda: Agenda Database

Flags can be used to select entries in agenda.find (p. 114), and they
must be used to indicate the type of the new entry in agenda.add

(p. 113).

For use in agenda.find (p. 114), there is also the value

• const all = 127 All flags combined.

Repetitive Entries

All dated entries can be repetitive: a repetitive entry is automatically
repeated according to its repeat details. For instance, an anniversary
is typically repeated on the same date every year. Repeating an entry
does not duplicate the entry; deleting or updating a repetitive entry also
deletes or updates all its repetitions.

In m, the repeat details of an entry are represented as an array stored in
the entry’s rep field. m recognizes the following keys of this array, with
the corresponding data type:

Key Meaning Type
end Repeat end date Seconds
interval Repeat interval (days, months, years) Integer
type Repeat type (see below) Integer
when Repeat selection (see below) Array of Integer

If end=null (the default), the entry is repeated forever. The default
interval is 1. type must be one of the following six values:

• const daily = Repeat daily.

Repeat the entry every interval days.

// plan for an 30 minute exercise at 8am
// every three days, starting today
today=86400 * math.trunc(time.get() / 86400);
e=["text":"exercise",

"start":today+8*3600,
"end":today+8*3600+1800,
"flags":agenda.appt,
"rep":["type":agenda.daily, "interval":3]]

• const weekly = Repeat weekly.

Repeat the entry every interval weeks, on the week days indicated by

m Mobile Shell Library Version 3.00 111

5. Personal Data c© 2008 airbit AG

when. Week days start with zero as Monday; see also time.dayofweek

(p. 50).

// repeat every week on Tuesday and Friday
e["rep"]=["type":agenda.weekly, "when":[1,4]]

• const monthlydate = Repeat monthly, at given dates.

Repeat the entry every interval months, on the days indicated by when.

// repeat every two months on the 10th and 25th
e["rep"]=["type":agenda.monthlydate,

"interval":2, "when":[10,25]]

• const monthlyday = Repeat monthly, at given days of

weeks.

Repeat the entry every interval months, on the week days in the weeks
indicated by when: when[2*i] indicates the week of the month (1 is the
first, 4 is the fourth, 5 the last), and when[2*i+1] indicates the day of
week (0 is Monday).

// repeat every month on the Tuesday (1) of the 2nd
// week (2), and on the Tuesday (1) of the last week (5)
e["rep"]=["type":agenda.monthlyday, "when":[2,1,5,1]]

• const yearlydate = Repeat yearly, at a given date.

Repeat the entry every interval years, on the date implied by the
entry’s start date. This repeat type is typically used for anniversaries.

// repeat every year
e["rep"]=["type":agenda.yearlydate]

• const yearlyday = Repeat yearly, at a given day of a

week of a month.

Repeat the entry every interval years, on the day indicated by when:
when[0] indicates the month, when[1] the week of the month (1 ist the
first, 4 is the fourth, 5 is the last), and when[2] the day of week (0 is
Monday).

// repeat yearly, on Sunday (6) of the 1st week in April
e["rep"]=["type":agenda.yearlyday,"when":[4,1,6]]

112 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 5.1. Module agenda: Agenda Database

agenda.add

• function add(entry)→ Number

Permissions: WriteApp

Add an entry to the agenda database, and return its id. The entry must be
an array with keys from the above tables. The entry type is derived from
the flags array element; if there is no flags element, an agenda.appt

entry is added.

// Add a 30 minute meeting starting in two hours,
// in the CEO’s office
start=time.get()+2*3600;
e=["text":"Group meeting",

"flags":agenda.appt,
"start":start,
"end":start+1800,
"loc":"CEO’s office"];

agenda.add(e)
→ 402653204
// Add an anniversary, repeating every year
e=["text": "Shakespeare’s Birthday",

"flags": agenda.anniv,
"start": time.num("2005-04-23"),
"base": 1564,
"rep": ["type":agenda.yearlydate]];

agenda.add(e)
→ 117440532

agenda.delete

• function delete(id)→ null

Permissions: WriteApp

Delete the contact with the given id.

Throws ErrNotFound if there is no such contact.

// delete the anniversary added in the add example
agenda.delete(117440532)

m Mobile Shell Library Version 3.00 113

5. Personal Data c© 2008 airbit AG

agenda.find

• function find(start=null, end=null, flags=agenda.appt
| agenda.event | agenda.anniv |
agenda.rep)→ Array

Permissions: ReadApp

Searches the agenda for entries overlapping with the period between
start and end, and with an entry type indicated by flags. The default
flags exclude to-do list entries.

Repeated entries are only reported if the first repetition falls within the
period. Use agenda.findall (p. 115) to find all events within a period,
including repetitions.

start and end must be given in seconds since year zero; start=null
indicates the earliest possible start date, end=null the latest possible
end date.

// get the number of entries in the agenda
print len(agenda.find(null, null, agenda.all))
→ 53
// print the text and start of today’s entries
today=86400*math.trunc(time.get()/86400);
for id in agenda.find(today,today+86400) do
e=agenda.get(id);
print e["text"], time.str(e["start"], "hh:mm")

end
→ ...

Group meeting 18:40
...

// delete all entries up to now, excluding repetitives
for id in agenda.find(null, time.get(),

agenda.all & ~agenda.rep)
agenda.delete(id)

end

114 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 5.1. Module agenda: Agenda Database

agenda.findall

• function findall(start, end, flags=agenda.appt |
agenda.event | agenda.anniv |
agenda.rep)→ Array

Permissions: ReadApp

This is similar to agenda.find (p. 114), except that all instances of
repeated entries are reported if they fall within the period. The function
returns an array with an element for each instance found. Each element
is again an array with the following elements:

Key Meaning
id The id of the entry, as returned by agenda.find.
at The start time of the instance. For a non-repeated

entry, this is the same as the entry’s start time. For a
repeated entry, this is the start time of the instance
falling within the selected period.

// print the text and start of today’s instances
today=86400*math.trunc(time.get()/86400);
for idtime in agenda.findall(today,today+86400) do
e=agenda.get(idtime["id"]);
print e["text"], time.str(idtime["at"], "hh:mm")

end
→ ...

Group meeting 18:40
Weekly Yoga session 20:30
...

agenda.get

• function get(id)→ Array

Permissions: ReadApp

Get the fields of the agenda entry with id id.

Throws ErrNotFound if there is no entry with this id.

m Mobile Shell Library Version 3.00 115

5. Personal Data c© 2008 airbit AG

// get the entry added before
e=agenda.get(402653204);
print e
→ [Group meeting,1,63284611200,63284613000,

CEO’s office]
print time.str(e["start"])
→ 2005-05-17 18:40:00

agenda.set

• function set(id, entry)→ null

Permissions: WriteApp

Updates the entry with id id, updating the fields in array entry. entry
must be an array with keys from the above tables. Fields which are null

in the array are cleared in the entry.

// Change the location of the group meeting
agenda.set(402653204, ["loc":"My office"])
// Set all done entries in the to-do list to "not done"
ids=agenda.find(null, null, agenda.todo | agenda.done);
for id in ids do
agenda.set(id, ["done":null])

end

5.2 Module contacts: Contacts Database

This module allows to read and manipulate the contacts stored on the
phone.

In the phone’s database, a contact is identified by its id, an integer
number.

Contact Fields

In m, a contact is represented as an array whose elements are the fields
of the contact. Fields are identified by their (array) keys. m recognizes
the following keys, with the corresponding data type:

116 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 5.2. Module contacts: Contacts Database

Key Meaning
adr Address (street)
birth Birthday
cell Cellphone number
company Company name
country Country
email e-mail address
extadr Additional address
extname Additional name
fax Fax number
fname First name
loc Locality (city)
name (Family) name

Key Meaning
note Contact note
pager Pager number
phone Voice phone number
pict Picture image data
po Post Office
region Region
ring Ringtone file name
text Free text
title Job Title
url Website URL
video Video phone number
zip Post Code

Key names are not case sensitive.

The order of fields in the array describing a contact is arbitrary. Arrays
returned by functions in this module always start with the two fields
name and fname, if these fields exist.

Address and phone number fields can have one of the following suffices:

Suffix Meaning
.home Home address or phone
.work Work address or phone

For instance, phone.home refers to the home phone number,
phone.work to the work phone number. phone without suffix is
unspecified.

Most fields are represented as strings. There are two exceptions:

• birth: The birthday is stored as a number indicating the seconds
since year zero. This is the format used by module time (p. 50).

• pict: The picture is stored as an array containing the image data,
typically in JPEG format. Example functions to load or store a the
picture of a contact c:

m Mobile Shell Library Version 3.00 117

5. Personal Data c© 2008 airbit AG

use io
function loadpict(file, c)
f=io.open(file);
s=io.read(f, io.size(f)); // read whole file
io.close(f);
c["pict"]=code(s) // string to byte array

end
function storepict(c, file)
if c["pict"]#null then
s=char(c["pict"]); // byte array to string
f=io.create(file);
io.write(f, s);
io.close(f)

end
end

Note that the builtin contacts application in the phone may not support
all keys, or display some of them in a strange way. Furthermore, not
all applications clearly separate home from work data. Hence, the cell
phone number of a person is sometimes stored as cell, sometimes as
cell.work or as cell.home.

The functions of this module throw ExcInvalidParam if a contact array
has no keys, or ErrBadName if a contact array has a key which is not in
the above table.

contacts.add

• function add(contact)→ Number

Permissions: WriteApp

Add a contact to the database, and return its id. The contact must be an
array with keys from the above tables.

c=["name": "Shakespeare",
"fname": "William",
"loc.home": "Stratford-upon-Avon"],
"loc.work": "London",
"birth": time.num("1564-04-23")];

contacts.add(c)
→ 114

118 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 5.2. Module contacts: Contacts Database

contacts.delete

• function delete(id)→ null

Permissions: WriteApp

Delete the contact with the given id.

Throws ErrNotFound if there is no such contact.

// delete the contact added in the add example
contacts.delete(114)

contacts.find

• function find(text=null, keys=["name","fname"],
sort=[])→ Array

Permissions: ReadApp

Searches the contact database for entries matching text considering the
fields specified in keys, and returns the ids of the matching contacts
sorted by the fields specified in sort:

• If text=null, all entries are returned, and keys is ignored.

• If text#null, searches the contact database for all entries match-
ing the words in text when considering the fields defined by
keys. Both text and all fields from the database are split into
words (sequences of characters or digits) before comparing them.
An entry matches if all of the words in text are found in any of
the fields considered. Words can also be abbreviated: William

matches both W or Will in the search text.
If keys defines a single field, it can be a string, otherwise it must
be an array of strings.

• If sort=[], the ids are sorted by their ascending numeric value.

• If sort is a string, the ids are sorted by the corresponding field.

• If sort is an array, the ids are sorted by the corresponding fields,
from highest to lowest sort order.

m Mobile Shell Library Version 3.00 119

5. Personal Data c© 2008 airbit AG

Throws ErrArgument if there are more than 32 keys or sort keys
specified.

// get the number of contacts in the database
print len(contacts.find())
→ 104
// print these contacts, sorted by name and first name
for id in contacts.find(null,null,["name", "fname"]) do
c=contacts.get(id);
print c[1], c[0]

end
→ ...

William Shakespeare
...

// Will matches William; so does W
print contacts.find("Will Shakespeare")
→ [114]
print contacts.find("W. Shakespeare")
→ [114]
// get the ids of everybody living or working in London
print contacts.find("London", "loc")
→ [45,67,89,90,91,114]
// Stratford-upon-Avon is considered three words,
// so Avon matches
print contacts.find("Avon", "loc")
→ [114]

contacts.findnr

• function findnr(number, digits=8)→ Array

Permissions: ReadApp

Retrieves the ids of the entries matching the given phone number. Only
the last digits digits in number are considered when comparing. The
minimum for digits is 7.

This function is much faster than find, and more useful, as it only looks
at digits, and the end of the phone numbers.

Throws ExcValueOutOfRange if digits is out of range.

120 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 5.2. Module contacts: Contacts Database

print contacts.findnr("+41(079)7654321", 9)
→ [28]

contacts.get

• function get(id, keys=null)→ Array

Permissions: ReadApp

Get fields of the contact with id id. If keys=null, returns all fields
defined for the contact. If keys#null, returns only the fields specified
in keys. keys can be a single string specifying a single field, or an array
specifying multiple fields.

If they exist, the fields name and/or fname are at the beginning of the
returned array.

Throws ErrNotFound if there is no contact with this id; throws
ErrArgument if there are more than 32 keys specified.

c=contacts.get(114);
print c
→ [Shakespeare,William,Stratford-upon-Avon,London,

49365849600]
print time.str(c["birth"])
→ 1564-04-23 00:00:00
print contacts.get(114, ["name", "fname"])
→ [Shakespeare,William]
c=contacts.get(114, "loc");
print c
→ [Stratford-upon-Avon,London]
print keys(c)
→ [loc.home,loc.work]

contacts.labels

• function labels(keys=null)→ Array

Get labels for the fields. Labels are language dependent. keys is
interpreted as follows:

• If keys=null, returns all standard labels.

m Mobile Shell Library Version 3.00 121

5. Personal Data c© 2008 airbit AG

• If keys is a string, returns the label(s) for the corresponding field(s).

• If keys is an array, returns the labels for the corresponding fields.

Throws ErrArgument if there are more than 32 keys specified.

Suffices (.home, .work) can be used as keys, but not as field suffices:
labels() throws ErrBadName in this case.

If they exist, the labels for name and/or fname are at the beginning of
the returned array.

The label array has the same keys as a contact.

l=contacts.labels();
print l
→ [Last name,First name,Tel. (home),Mobile

(home),Fax (home),E-mail (home),Web addr. (home),
Street (home),...<46>]

l["title"]
→ Job title
// print a contact with all its labels
c=contacts.get(114);
for k in keys(c) do
print l[k], "-", c[k]

end
→ Last name - Shakespeare

First name - William
City (home) - Stratford-upon-Avon
City (business) - London
Birthday - 49365849600

// get all work related labels
print contacts.labels([".work"])
→ [Tel. (business),Mobile (business),Fax

(business),E-mail (business),Web addr. (bus.),Street
(business),...<12>]

contacts.labels("phone.work")
→ ErrBadName thrown

contacts.new

• function new(time)→ Array

Permissions: ReadApp

122 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 5.2. Module contacts: Contacts Database

Returns the list of contacts modified since the specified point in time.
time is the number of seconds since year 0 UTC. See also module time

(p. 50).

// get the entries changed within the last ten minutes
print contacts.new(time.utc()-10*60)
→ [114]

contacts.own

• function own()→ Number

Permissions: ReadApp

• function own(id)→ Number

Permissions: ReadApp+WriteApp

There is a single contact in the database which can be marked as own
contact, indicating the owner of the phone (or any other particular
person). Some phones can use this information to quickly send a vCard1

of the phone owner.

Without an argument, the id of this contact is returned. With an
argument, the own contact id is set to id, and the old one is returned.

Returns -1 if no own contact has been set, or it has been deleted.

Throws ErrNotFound if there is no contact with this id.

// if there is no owner, make it the first Shakespeare
if contacts.own()=-1 then
ids=contacts.find("Shakespeare");
if len(ids)>0 then
contacts.own(ids[0])

end
end

1A standard defined by the Internet Mail Consortium, see
www.imc.org/pdi/vcardoverview.html.

m Mobile Shell Library Version 3.00 123

http://www.imc.org/pdi/vcardoverview.html

5. Personal Data c© 2008 airbit AG

contacts.set

• function set(id, contact)→ null

Permissions: WriteApp

Updates the contact with id id, updating or adding fields in array
contact. contact must be an array with keys from the above tables.

Fields already existing in the database are updated, the other fields are
added. Fields not in the array are not modified. Fields which are null in
the array are removed from the contact.

// Replace all +41 1 numbers by +41 44
const fields=["phone", "fax", "cell", "pager"]);
for id in contacts.find() do
c=contacts.get(id, fields);
m=false;
for i=0 to len(c)-1 do
// field could be null or too short
if c[i]!=null then
n=trim(c[i]);
if len(n)>=11 then
// replace +411 by +4144
if substr(n,0,4)="+411" then
c[i]="+4144" + substr(n, 4); m=true

// replace +41 1 by +41 44
elsif substr(n,0,5)="+41 1" then
c[i]="+41 44" + substr(n, 5); m=true

end
end

end
end;
if m then
contacts.set(id, c)

end
end

124 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

6. Communications

6.1 Module bt: Bluetooth Communication

This module provides access to Bluetooth R© wireless communication with
other Bluetooth equipped devices. The supported functions are:

• Obtaining the own bluetooth address and name, and modifying
the latter.

• Getting and setting the Bluetooth visibility flag.

• Scanning for visible devices and obtaining the address, name and
class, also interactively.

• Creation of services (passive connections), either directly using
a channel number, or by registering with an UUID for service
discovery.

• Connecting to services (active connections), either directly using a
channel number, or by looking an UUID up via service discovery.

Terminology

Bluetooth is a relatively complex technology. The following is a quick
crash course of the key concepts required to completely understand
this module. For more information and detailed specifications, see
www.bluetooth.org.

• Device Address: Each Bluetooth device is identified by a unique
48 bit address. In this module, an address is a string of six hex-
adecimal bytes, separated by colons, e.g. "00:E0:03:5E:AF:CD",
or "0:e0:3:5e:af:cd".

m Mobile Shell Library Version 3.00 125

http://www.bluetooth.org
http://www.bluetooth.org

6. Communications c© 2008 airbit AG

• Device Name: Each Bluetooth device can have a freely assignable
name. A well chosen name helps in distinguishing visible devices,
but is of little use when trying to automatically identify or find a
device.

• Device Class: Each Bluetooth device has a class defining its type
and capabilities. The device class is a 24 bit integer, encoded as
follows:

Bits Value Contents
0-1 Always zero
2-7 Minor device class:

interpretation depends on Major device class
8-12 Major device class:

0 Miscellaneous
1 Computer
2 Phone
3 LAN/Network access point
4 Audio/Video
5 Peripheral (mouse, joystick, keyboard)
6 Imaging (printer, display, scanner, camera)
7 Wearable

31 Uncategorized
13-23 Service class:

16 1 Positioning (GPS)
17 1 Networking (LAN)
18 1 Rendering (Video and Audio)
19 1 Capturing (Video and Audio)
20 1 Object Transfer (vCal, vCard)
21 1 Audio
22 1 Telephony
23 1 Information (WWW/WAP-Servers)

• SDP (Service Discovery Protocol): A mechanism to advertise
services (e.g. data synchronization, printing, scanning, or own
services), and discover them. Services are identified by UUIDs.

• UUID (Universally Unique Identifier): This is a 128 bit (16
byte) quantity. In Bluetooth, each service has one or more UUIDs

126 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.1. Module bt: Bluetooth Communication

assigned: when creating a service, a UUID should be assigned to it
(see bt.start (p. 133)).

In this module, a UUID is represented as an array of four nonnega-
tive numbers, starting with bits 127 to 96, and ending with bits 31
to 0. See also bt.uuid (p. 135).

In Bluetooth, often only 32 bits of the UUID are specified. Such an
UUID maps to a 128 bit UUID by adding fixed values for the lower
96 bits:

u=bt.uuid(12345);
print u
→ [12345,4096,2147483776,1604007163]
for v in u do print hexstr(v) end
→ 3039

1000
80000080
5f9b34fb

A few of the standard 32 bit UUIDs are:
Hex Decimal Service Class

3 3 RFCOMM
100 256 L2CAP

1101 4353 Serial Port
1103 4355 Dialup Networking
1105 4357 Obex (Object Exchange)
1111 4369 Fax
1204 4612 Generic Telephony

• RFCOMM (Radio Frequency Communications): Provides reliable
communication between two Bluetooth devices. This corresponds
to the TCP layer in the Internet world.

• Channel: An integer identifying an RFCOMM communication
stream. This corresponds to a port number in the Internet world. A
service can be reached by a device address and a channel number.

Connections Are Streams

Once created, a Bluetooth connection is accessed via module io (p. 36):

m Mobile Shell Library Version 3.00 127

6. Communications c© 2008 airbit AG

• io.read, io.readln, and io.readm receive data,

• io.write, io.writeln, io.writem, io.print, and io.println

send data,

• io.avail gets the number of bytes which can be read without
blocking,

• io.wait waits for data which can be read without blocking,

• io.close closes the connection.

• io.ces gets and sets the character encoding scheme. As with files,
the default is io.raw.

• io.timeout sets the timeout for send and receive operations.

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is sent.

Simple Example

To illustrate use of the m Bluetooth module, a trivial client-server example
is presented. The server reverses each line of input it receives.

Client code:

use bt, io
// have the user select a device
dev=bt.select();
// connect to server
s=bt.conn(dev["adr"], "Reverser");
// write a line
io.writeln(s, "Hello world!");
// read the result
print io.readln(s)
→ !dlrow olleH
// and again
io.writeln(s, "Bye server");
print io.readln(s)
→ revres eyB
io.close(s)

128 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.1. Module bt: Bluetooth Communication

Server code:

// a function which reverses a string
function reverse(s)
c=code(s);
i=0; j=len(c)-1;
while i<j do
h=c[i]; c[i]=c[j]; c[j]=h; i++; j--

end;
return char(c)

end

use bt, io
// create and advertise a service called "Reverser"
service=bt.start("Reverser");
while true do // loop forever
// wait for a client
io.print(io.stdout, "Waiting...");
s=bt.accept(service);
print bt.adr(s),"ok.";
// read each line, writing it back reversed
line=io.readln(s);
while line#null do
io.writeln(s, reverse(line));
line=io.readln(s)

end;
io.close(s)

end
→ Waiting...00:0E:07:C9:EE:88 ok.

Waiting...

bt.accept

• function accept(service)→ Native Object

Permissions: FreeComm

Marks service available, then waits for a device connecting to service.
When a device connects successfully, marks service as unavailable, and
returns the connection stream.

See bt.start (p. 133) for an example.

m Mobile Shell Library Version 3.00 129

6. Communications c© 2008 airbit AG

bt.adr

• function adr(stream)→ String

Permissions: FreeComm

• function adr()→ String

Permissions: FreeComm

With one argument, returns the Bluetooth address of the device stream

is connected to.

Without arguments, returns the local (own) Bluetooth address.

s=bt.accept(service);
// who connected?
print bt.adr(s)
→ 00:0E:07:C9:EE:88
// our own bluetooth address
print bt.adr()
→ 00:E0:03:5E:AF:CD

bt.chan

• function chan(service)→ Array

Permissions: FreeComm

• function chan(adr, uuid)→ Array

Permissions: FreeComm

With one argument, returns the channel number of service, in an array
with the service name as key.

With two arguments, queries the service discovery database of the device
with address adr for all services with the service class UUID defined by
uuid, and returns their channel numbers in an array with the service
names as keys. See bt.uuid (p. 135) for the values allowed for uuid.

130 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.1. Module bt: Bluetooth Communication

// create a service on a fixed channel
s=bt.start("Sample", 18);
// obtain the channel of the service
c=bt.chan(s);
print c, keys(c)
→ [18] [Sample]
// query a device for all Obex services
c=bt.chan("00:0E:07:C9:EE:88", 4357);
print c, keys(c)
→ [9] [OBEX Object Push]
// query a device for all services using RFCOMM
c=bt.chan("00:0E:07:C9:EE:88", 3);
print c, keys(c)
→ [1,2,10,9,15,11,12,3] [Hands-Free Audio Gateway,

Headset Audio Gateway,OBEX File Transfer,OBEX Object
Push, Imaging,SyncMLClient,...<8>]

bt.conn

• function conn(adr, uuidOrChannel)→ Native Object

Permissions: FreeComm

If uuidOrChannel is an array or a string, queries the service discovery
database of the device with address adr for the first service with the
service class UUID defined by uuidOrChannel, then connects to the
service’s channel.

If uuidOrChannel is a number, connects directly to channel
uuidOrChannel of the device with address adr, without querying the
database.

// connect to the Obex service on a device
dev="00:0E:07:C9:EE:88";
s=bt.conn(dev, [4357]);
io.close(s)
// connect to channel 18 on the same device
s=bt.conn(dev, 18);
io.close(s)

m Mobile Shell Library Version 3.00 131

6. Communications c© 2008 airbit AG

bt.name

• function name()→ String

Permissions: FreeComm

• function name(newname)→ String

Permissions: FreeComm+WriteApp

Without an argument, returns the local (own) device name. With a single
argument, set the local device name to newname and returns the old
name.

// change the name, returning the old one
print bt.name("Test Device #1")
→ Nokia 6670
// get the current name
print bt.name()
→ Test Device #1

bt.scan

• function scan(limited=false)→ Array

Permissions: FreeComm

• function scan()→ Array

Permissions: FreeComm

With a single argument, scans for other visible bluetooth devices in the
neighborhood, and returns the first device found, or null if there is no
visible device.
If limited=false, the scan is performed with general unlimited inquiry
access code (IAC), returning all devices.
If limited=true, the scan is performed with the faster limited IAC, but
only returning devices which are scanning with limited IAC.

Without an argument, continues scanning, and returns the next device
found, or null if there are no more devices.

Making an SDP request (bt.chan, bt.conn) ends the current scan, i.e.
the next call to bt.scan will always start a new scan.

Each device found is returned as an array with the following keys:

132 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.1. Module bt: Bluetooth Communication

Key Meaning Type
adr Device address String
name Device name String
class Device class Integer

dev=bt.scan(false);
// print each device
while dev#null do
print dev;
// get the next device
dev=bt.scan()

end
→ [00:E0:03:5E:AF:CD,Test Device #1,5243404]
→ [00:0E:07:C9:EE:88,Test Device #2,5251596]

bt.select

• function select()→ Array

Permissions: FreeComm

Shows an interactive dialog scanning for Bluetooth devices and allowing
the user to select one. Returns the selected device in the same format as
returned by bt.scan (p. 132), or null if the user cancelled the selection.

print bt.select()
→ [00:E0:03:5E:AF:CD,Test Device #1,5243404]

bt.start

• function start(name, uuidOrChannel=null,flags=0)→
Native Object

Permissions: FreeComm

Creates a service with name name and returns it. To accept an incoming
connection on the service, use bt.accept (p. 129).

If uuidOrChannel is an array or a string, bt.start finds an unused
channel and creates a service with the UUID defined by uuidOrChannel.
The service is advertised in the service discovery database of the device.

uuidOrChannel=null is equivalent to uuidOrChannel=name.

m Mobile Shell Library Version 3.00 133

6. Communications c© 2008 airbit AG

If uuidOrChannel is a number, listens directly on channel
uuidOrChannel, without advertising the service.

The security imposed on incoming connections is defined by flags,
which is a combination of the following values:

• const authenticate = 1 Connecting devices must be paired, or
mutual password authentication is requested.

• const encrypt = 2 Data transfers are encrypted.

• const authorise = 4 The user is asked for authorisation whenever
a device attempts to connect to the channel.

// create a service with the UUID of the Fax
// service class, and asking for authorisation
service1=bt.start("My Fax", [4369], bt.authorise);
// wait for a connection
conn=bt.accept(service1);
...
// create a service listening on channel 18
service2=bt.start("Sample", 18);
conn2=bt.accept(service2);
...

bt.stop

• function stop(service)→ null

Permissions: FreeComm

Stops service. If it has been advertised, it is removed from the service
discovery database.

bt.timeout

• function timeout()→ Number

Permissions: FreeComm

• function timeout(ms)→ Number

Permissions: FreeComm

Gets or sets the timeout used during most functions of this module.
Without arguments, returns the current timeout in milliseconds. With

134 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.1. Module bt: Bluetooth Communication

one argument, returns the old timeout, and sets the new timeout
to ms. Setting the timeout to zero (the default) or a negative value
disables timeouts, i.e. Bluetooth operations can block indefinitely, or use
a timeout defined by the underlying system.

Throws ExcValueOutOfRange if ms exceeds 2147483 (35 minutes and
47.483 seconds).

The timeout is used in all following calls: whenever an operation
does not complete within the given number of milliseconds, it throws
ErrTimedOut.

// allow 10 seconds to connect
bt.timeout(10000);
try
s=bt.conn("00:E0:03:5E:AF:CD", 4)
// connection successful...

catch e by
if index(e, "ErrTimedOut") # 0 then throw e end;
print "Could not connect within 10 seconds"

end

bt.uuid

• function uuid(uuid)→ Array

Permissions: FreeComm

Converts a number, string or array to a 128 bit UUID, and returns the
UUID as an array of four integers.

• If uuid is a number, uuid is considered a 32 bit Bluetooth UUID.

• If uuid is an array with one element, its only element is considered
a 32 bit Bluetooth UUID.

• If uuid is an array with four elements, they are considered the four
32 bit values making up the entire 128 bit UUID (from highest to
lowest).

• If uuid is a string with two characters or less, the characters are
considered a 16 bit Bluetooth UIID.

m Mobile Shell Library Version 3.00 135

6. Communications c© 2008 airbit AG

• If uuid is a string with three or four characters, the characters are
considered a 32 bit Bluetooth UIID.

• If uuid is a string with more than four characters, its first 16
characters are considered the 16 bytes of the UUID (from highest
to lowest). Missing bytes are assumed zero.

All other values throw ErrArgument.

print bt.uuid(12345);
→ [12345,4096,2147483776,1604007163]
print bt.uuid([12345]);
→ [12345,4096,2147483776,1604007163]
print bt.uuid("Sample")
→ [1398893936,1818558464,0,0]
print bt.uuid([1,2])
→ ErrArgument thrown

bt.visible

• function visible()→ Boolean

Permissions: FreeComm

• function visible(newvisible)→ Boolean

Permissions: FreeComm+WriteApp

Capabilities: certified

Compatibility of function bt.visible

Nokia phones before Symbian 8a ok
Nokia phones with Symbian 8b ErrNotSupported

Symbian 3rd Edition and Sony Eric-
sson phonesc

ErrNotSupported

aChanging the visibility is not reflected in the phone’s settings UI.
bParts of the Bluetooth API are not available on these phones.
cThe visibility flag can only be read, but not set.

Without an argument, returns the current visibility state of this device:
true if the device is detectable by others, false if it is not visible.

136 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.2. Module comm: Serial Communications

With an argument, sets the visibility to newvisible, and returns the old
visibility state.

// make the device visible
bt.visible(true)
// is it visible?
print bt.visible()
→ true

6.2 Module comm: Serial Communications

This module provides access to the (usually software emulated) serial ports
of the phone. Each communications device capable of performing serial
communications is identified by its name (‘‘module name’’ in Symbian
OS). Serial communication is often emulated by a device capable of
multiplexing, a device may offer multiple units.

Often available devices are:
Device Name Unit
USB Serial Port ecacm 1

Infrared (IrDA) ircomm 0

Bluetooth Serial Port btcomm 0

Note that not all devices are available on all phones, e.g. because the
hardware or the appropriate driver are missing. Furthermore, the names
and available units may also differ between phone models. Some units
may already be used by the system software on the phone. A bit of try
and error may be required to create a working connection.

Because of all these restrictions, use of serial communications should be
avoided in m applications designed to be portable.

Serial Ports Are Streams

Once created, a serial port is accessed via module io (p. 36):

• io.read, io.readln, and io.readm receive data,

• io.write, io.writeln, io.writem, io.print, and io.println

send data,

m Mobile Shell Library Version 3.00 137

http://www.symbian.com
http://www.symbian.com

6. Communications c© 2008 airbit AG

• io.avail gets the number of bytes which can be read without
blocking,

• io.wait waits for data which can be read without blocking,

• io.close closes the connection.

• io.ces gets and sets the character encoding scheme. As with files,
the default is io.raw.

• io.timeout sets the timeout for send and receive operations.

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is sent.

comm.config

• function config(port)→ Array

• function config(port,config)→ Array

Permissions: FreeComm

With one parameter, gets the configuration of the serial port port. port
must have been obtained via comm.open (p. 139).

With two parameters, sets the configuration from the fields in the array
config, and returns the old configuration.

Configurations are represented by an array with the following elements:

Key Meaning Type
bps Speed of the port (bits per second) Integer
data Number of data bits (5 to 8) Integer
stop Number of stop bits (1 to 2) Integer
parity Parity bit (0 to 4 corresponding to none, even,

odd, mark, space)
Integer

terms Characters considered terminators String

// open an infrared port
s=comm.open("ircomm", 0)
// set it to 4 Mbit/s, 8 data and 1 stop bit, no parity
print comm.config(s, ["bps":4000000, "data":8,

"stop":1, "parity":0])
→ [9600,8,1,0,]

138 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.2. Module comm: Serial Communications

comm.link

• function link(port,timeout=-1)→ Boolean

Attempts to establish a link open for reading and writing, waiting until
the other end allows writing. Returns true as soon as the link is up.

If timeout>=0 and timeout milliseconds have passed without the link
coming up, false is returned.

Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

Reading from or writing to the port will also establish a link.

See comm.signal (p. 140) for an example.

comm.open

• function open(name,unit,dceRole=false)→ Native Object

Permissions: FreeComm

Opens a serial port for communication over the device with name
name, using unit unit, and returns a stream object representing the
port. unit must be in the range returned by comm.units (p. 141). If
dceRole=false, the serial port is working as a data terminal equipment;
if dceRole=true, it is working as a data computer equipment.

Throws ErrNotFound if a device with this name does not exist. Throws
ExcIndexOutOfRange if the unit is not within the range returned by
comm.units (p. 141).

The following example communicates with a PC over the USB cable.
If you use a terminal application on the PC communicating over the
corresponding port1, the tiny program will echo every line typed into the
terminal application, converted to uppercase.

1On Windows, the port number (e.g. COM3) can usually be found in the hardware
manager.

m Mobile Shell Library Version 3.00 139

6. Communications c© 2008 airbit AG

// Open a port to communicate with a PC
s=comm.open("ecacm", 1);
while true do
l=io.readln(s);
io.writeln(s, upper(l))

end

comm.signal

• function signal(port)→ Number

• function signal(port,signals,mask=0x3f)→ Number

Permissions: FreeComm

With one parameter, gets the (input) signals of the serial port port. port
must have been obtained via comm.open (p. 139).

With two parameters, sets the (output) signals of the serial port contained
in mask to the corresponding bit values in signals.

The signal bits are:

• const cts = 1 Clear to send signal (input).
• const dcd = 4 Data carrier detect signal (input).
• const dsr = 2 Data set ready signal (input).
• const dtr = 32 Data terminal ready signal (output).
• const rts = 16 Ready to send signal (output).

// open an infrared port
s=comm.open("ircomm", 0)
// wait until a connection appears
print comm.link(s)
→ true
// wait until the connection disappears again
while comm.signal(s) & comm.dsr # 0 do
sleep(1000); print comm.signal()

end
→ 3

...
3
0

140 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.3. Module net: TCP/IP Networking

comm.units

• function units(name)→ Array

Permissions: FreeComm

Gets the range of units the device with name name supports. The range
is returned as [minUnit,maxUnit].

Throws ErrNotFound if a device with this name does not exist.

// Get the units of the IrDA device
print comm.units("ircomm")
→ [0,15]

6.3 Module net: TCP/IP Networking

This module supports creation of active TCP connections to hosts any-
where on the Internet. Secure connections based on SSL or TLS are also
supported, as well as simple host name and IP address resolution.

Listening for incoming (passive) connections is also possible. Keep in mind
that this generally only makes sense for local connections to 127.0.0.1,
as the phone is usually part of a private network and not visible to the
rest of the internet.

This module does not support IPv6.

Connections Are Streams

Once created, a TCP/IP connection, whether secure or unsecure, is
accessed via module io (p. 36):

• io.read, io.readln, and io.readm receive data,

• io.write, io.writeln, io.writem, io.print, and io.println

send data,

• io.avail gets the number of bytes which can be read without
blocking,

• io.wait waits for data which can be read without blocking, or for
an incoming connection,

m Mobile Shell Library Version 3.00 141

6. Communications c© 2008 airbit AG

• io.close closes the connection or listening socket.

• io.ces gets and sets the character encoding scheme. As with files,
the default is io.raw.

• io.timeout sets the timeout for send, receive and wait operations.

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is sent.

Internet Access Points

Except for local connections, using TCP/IP requires the phone to connect
to an IAP (Internet Access Point), typically via GPRS or UMTS, or via
WLAN on devices supporting it. The TCP/IP functions of the phone deal
with these automatically, depending on the phone configuration. The
net module provides limited support to manage IAP connections: see
net.iap (p. 145), net.iaps (p. 146), net.start (p. 151) and net.stop

(p. 151).

net.accept

• function accept(pstream)→ Native Object

Permissions: CostComm

Waits for a new incoming connection on the port defined by pstream,
and returns it as a stream.

pstream is a passive stream which is obtained by call to net.listen

(p. 147). See there for a complete example.

net.adr

• function adr(hostname)→ Array

Permissions: CostComm

Resolves a host name to its IP address or addresses. The addresses are
returned as an array of strings, each string representing the IP address in
the standard dot notation.

142 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.3. Module net: TCP/IP Networking

print net.adr(’www.google.com’)
→ [216.239.59.103,216.239.59.104,

216.239.59.99,216.239.59.147]

See also: net.local (p. 149), net.remote (p. 150)

net.cert

• function cert(stream)→ Array

Permissions: CostComm

Gets the X.509 server certificate of the secure connection stream.
The certificate identifies and (if it is valid) authenticates the host the
connection has been made to.

This function returns null if stream is not secure.

The certificate is returned as an array with the following keys:

Key Meaning Type
subject Certified subject (in X.500 format) Array
issuer Certificate issuer (in X.500 format) Array
version Certificate version Integer
serial Certificate serial number String
start Start of validity period Seconds
end End of validity period Seconds
md5 Fingerprint of certificate (MD5 hash) String

subject and issuer are arrays containing key-value pairs, with the keys
being hierarchical OID numbers. For instance, the key "2.5.4.3" stands
for Common Name, and "2.5.4.10" for Organization Name.

start and end define the validity period of the certificate, in seconds
since year zero, as used by module time (p. 50).

serial and md5 encode each byte as a string character; use .code (p. 8)
to convert them to single bytes.

m Mobile Shell Library Version 3.00 143

http://asn1.elibel.tm.fr/en/oid/index.htm

6. Communications c© 2008 airbit AG

// connect to a secure Web server
s=net.conn("www.yellownet.ch", 443, net.ssl);
// send a request
io.write(s, ’GET / HTTP 1.1\r\n\r\n’);
// read the first four lines
for i=1 to 4 do
print io.readln(s)

end
→ HTTP/1.1 302 Found

Date: Tue, 24 May 2005 12:47:08 GMT
Server: Stronghold
Location: https://www.postfinance.ch/

// look at the certificate
c=net.cert(s);
print c["subject"]["2.5.4.3"]
→ www.yellownet.ch
print c["subject"]["2.5.4.10"]
→ Die Schweizerische Post
// close the connection
io.close(s)

net.conn

• function conn(host, port, secure=null, silent=false,
authName=null)→ Native Object

Permissions: CostComm

Connects to the host host on TCP/IP port port. host can be a host name
(e.g. "www.m-shell.net"), or an IP address (e.g. "212.117.205.10").

If secure=null, the connection is unsecure. To secure the connection,
use one of the following constants:

• const ssl = "SSL3.0" Use SSL (Secure Sockets Layer) 3.0.
• const tls = "TLS1.0" Use TLS (Transport Layer Security) 1.0.

If silent=false, the user will be prompted when the certificate pre-
sented by the server cannot be authenticated or has expired, giving the
user the opportunity to accept the certificate for this session.

If silent=true, an invalid certificate will simply throw
ErrCertificateUnknown, or some other SSL exception.

authName indicates the expected name authenticated by the certificate.

144 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.3. Module net: TCP/IP Networking

If authName=null, it defaults to host.

Compatibility of Secure Connections
Sony Ericsson phones Unreliable, may hang

// connect to airbit’s SMTP mail server
s=net.conn("mail.airbit.ch", 25);
// read the prompt
print io.readln(s)
→ 220 mail.airbit.ch ESMTP ...
// immediately logout again
io.write(s, "QUIT\r\n");
// read the goodbye message
print io.readln(s)
→ 221 Service closing transmission channel
// close the connection
io.close(s)

For a secure connection example, see net.cert (p. 143).

net.iap

• function iap()→ Array

Permissions: CostComm

• function iap(setting)→ Array

Permissions: CostComm+WriteApp

Capabilities: extended

Sets and gets the preferred Internet Access Point (IAP) to use. The
preferred IAP setting consists of an array with three elements:

Index Meaning Type
0 Prompt user for IAP when connecting Boolean
1 Preferred IAP id Number
2 Bearer types supported by this setting Number

The preferred IAP id corresponds to an id of the IAP table in the phone,
as returned by net.iaps. The bearer set defines the set of bearer types
supported by this setting.

m Mobile Shell Library Version 3.00 145

6. Communications c© 2008 airbit AG

Without arguments, this function returns the current preferred IAP
setting. With a single boolean argument, it returns the old setting and
sets the ‘‘prompt user’’ flag. With an array argument, it updates the
corresponding entries, depending on the length of the array (1 to 3
elements).

// get current setting
s=net.iap();
print s
→ [false,14,3]
// change the preferred IAP id to 2 and enable prompting
net.iap([true, 2])
// disable prompting
net.iap(false)
// restore the old setting
net.iap(s)

net.iaps

• function iaps(bearerMask=net.csd|net.wcdma|net.lan|
net.cdma2000|net.virtual)→ Array

Permissions: CostComm

Returns the configured IAPs whose bearer matches one of the flags in
bearerMask. The mask bits are the following:

• const csd = 1 circuit switched data: slow dialup connection.
• const wcdma = 2 wide band code division multiple access, a 3G
(UMTS) technology; also includes GPRS if 3G is not available.
• const lan = 4 local area network, typically WLAN.
• const cdma2000 = 8 code division multiple access 2000, another
3G technology.
• const virtual = 16 virtual bearer using another transport.

Each array element returned is itself an array with the following fields:

Key Meaning Type
id Internal IAP id Number
name IAP name String

146 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.3. Module net: TCP/IP Networking

// get all IAPs
for p in net.iaps() do
print p

end
→ [1,Easy WLAN]

[2,Swisscom GPRS]
[3,Swisscom MMS]
[4,Swisscom Internet]
[5,Airbit WLAN]

// get only local network (WLAN) IAPs
for p in net.iaps(net.lan) do
print p

end
→ [1,Easy WLAN]

[5,Airbit WLAN]
// use the last WLAN for further connections
net.iap([false,p[’id’]])

net.listen

• function listen(port, addr=’0.0.0.0’, queue=4)→ Native
Object

Creates a passive stream listening for incoming connections on the given
port and address, and returns it. The address 0.0.0.0 allows connections
to any valid IP address of the device. queue is the maximum number of
queued unaccepted connections.

The passive stream can be passed to the following functions:

• net.accept (p. 142) waits for an incoming connection, and returns
it.

• io.wait (p. 44) allows to simultaneously wait for an incoming
connection and data being available on established connections or
streams. If io.wait returns a passive stream, io.avail (p. 38) on
this stream will return 1 afterwards.

• io.close (p. 39) closes the passive stream and stops listening on
the given port, freeing it for other processes.

The following example is a server waiting for connections on port 4242,

m Mobile Shell Library Version 3.00 147

6. Communications c© 2008 airbit AG

receiving lines from the incoming connections and sending them back
reversed. You may want to compare this example to the corresponding
Bluetooth implementation in section 6.1 (p. 128). The main difference
is that TCP/IP supports multiple connections per port and thus requires
io.wait to manage them simultaneously.

use net, io, array
// create a passive stream listening on port 4242
p=net.listen(4242);
m=[p]; // the monitored streams
while true do // loop forever
// wait for a client
io.print(io.stdout, "Waiting...");
s=io.wait(m);
if s=p then // new connection, accept it
print "got new connection.";
append(m, net.accept(p))

else // data on existing connection
io.print(io.stdout, "reading...");
line=io.readln(s);
if line#null then
print "got", line;
io.writeln(s, reverse(line))

else // EOF, remove connection
print "lost connection.";
io.close(s);
array.remove(m, array.index(m, s))

end
end

end
→ Waiting...got new connection.

Waiting...got new connection.
Waiting...reading...got Lucky Luke
Waiting...reading...got Jolly Jumper
Waiting...reading...lost connection.
Waiting...

Sample client calls producing the above output are:

148 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.3. Module net: TCP/IP Networking

s1=net.conn(’127.0.0.1’, 4242);
s2=net.conn(’127.0.0.1’, 4242);
io.write(s1, ’Lucky Luke\n’);
io.readln(s1)
→ ekuL ykcuL
io.write(s2, ’Jolly Jumper\n’);
io.readln(s2)
→ repmuJ ylloJ
io.close(s1)

net.local

• function local(stream)→ Array

Permissions: CostComm

Returns the local (your own) IP address and port of the connection
defined by stream as an array:

Key Meaning Type
adr TCP/IP address String
port TCP/IP port Number

Throws ErrBadHandle if stream is not an open connection.

s=net.conn(’www.post.ch’, 80);
print net.local(s)
→ [10.122.18.7,32803]

net.name

• function name(address)→ Array

Permissions: CostComm

• function name()→ Array

Permissions: CostComm

Finds the host names belonging to an IP address. The IP address must be
a string in standard dot notation. The names are returned as an array of
strings.

Without arguments, returns the local (own) host name.

m Mobile Shell Library Version 3.00 149

6. Communications c© 2008 airbit AG

print net.name(’62.65.129.6’)
→ [mail.infowing.ch]
print net.name()
→ [localhost]

net.remote

• function remote(stream)→ Array

Permissions: CostComm

Returns the remote (the remote host’s) IP address and port of the
connection defined by stream as an array:

Key Meaning Type
adr TCP/IP address String
port TCP/IP port Number

Throws ErrBadHandle if stream is not an open connection.

p=net.listen(4242);
s=net.accept(p);
print net.remote(s)
→ [127.0.0.1,39934]

net.shut

• function shut(stream, abort=false)→ null

Permissions: CostComm

Shuts the connection defined by stream down. If abort=false, shut-
down is gracefully, i.e. all pending data is transmitted. If abort=true,
sending and receiving is stopped immediately.

io.close (p. 39) also shuts down a connection, but net.shut gives
finer control over connection termination, and allows to catch errors.

s=net.conn(’mail.airbit.ch’, 25);
// abort the connection
net.shut(s, true)

150 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 6.3. Module net: TCP/IP Networking

net.start

• function start()→ null

Permissions: CostComm

• function start(prompt)→ null

Permissions: CostComm

Starts the IAP connection.

Without argument, connects using the current IAP settings. This is
normally not required, as connections are created on demand.

With argument, connects using the current IAP settings, but overrides
the prompt flag: if prompt=false, the user is not prompted to choose
an IAP; if prompt=true, the user is always prompted.

// start the connection without prompting for an IAP
net.start(false)

net.stop

• function stop()→ null

Permissions: CostComm

Capabilities: certified

Stops the current IAP connection. Calling this function is normally not
required, as connections are removed when they are no longer needed.

// change the IAP, then stop the connection
net.iap([false, 7]);
net.stop()
// resolving a host name should restart the connection
// with the new IAP
net.adr(’www.m-shell.net’)
→ [62.202.44.142]

net.timeout

• function timeout()→ Number

Permissions: CostComm

m Mobile Shell Library Version 3.00 151

6. Communications c© 2008 airbit AG

• function timeout(ms)→ Number

Permissions: CostComm

Gets or sets the timeout used when looking up names and when con-
necting. Without arguments, returns the current timeout in milliseconds.
With one argument, returns the old timeout, and sets the new timeout
to ms. Setting the timeout to zero (the default) or a negative value
disables timeouts, i.e. TCP/IP operations can block indefinitely, or use a
timeout defined by the underlying system.

Throws ExcValueOutOfRange if ms exceeds 2147483 (35 minutes and
47.483 seconds).

The timeout is used in all following name resolution, connect and
shutdown calls: whenever an operation does not complete within the
given number of milliseconds, it throws ErrTimedOut.

// give the phone 10 seconds to connect
net.timeout(10000);
try
s=net.conn("mail.airbit.ch", 25)
// connection successful...

catch e by
if index(e, "ErrTimedOut") # 0 then throw e end;
print "Could not connect within 10 seconds"

end

152 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

7. Messaging

7.1 Module mms: Multimedia Messages

Compatibility of module mms

Sony Ericsson phones: all functions
except mms.senda

ErrNotSupported

aThe MMS API on SE devices only supports sending. Use module msg to read MMS.

This module supports sending and receiving of multi media messages
(MMS). In the context of this module, an MMS is simply a set of files
being sent from and to mobile devices, very similar to an e-mail with
attachments.

MMS are identified by numbers. These numbers are used to retrieve and
update message contents, and to delete messages.

When a function of the module is called for the first time, it starts
listening for incoming messages and enqueues their numbers. Calling
mms.receive will return these numbers. Messages received earlier can
be retrieved from the inbox.

The typical sequence to consume messages starting with a certain token
in the subject (//tok in our example) is:

m Mobile Shell Library Version 3.00 153

7. Messaging c© 2008 airbit AG

nr=mms.receive(); // wait for a new message
msg=mms.get(nr); // get the message
words=split(msg["subject"]); // split into words
if len(words)>0 and words[0] = "//tok" then
// first word is //tok, process message files
for f in msg["files"] do
...

end;
// delete it from the inbox
mms.delete(nr)

end

The functions in this module correspond to those in module sms (p. 167)
for short messages.

mms.delete

• function delete(msgnum)→ null

Permissions: FreeComm+WriteApp

Delete the message with number msgnum from the inbox.

Throws ErrNotFound if the message with this number does not exist.

// delete all MMS inbox messages older than a week
lastweek=time.get()-7*24*3600;
for id in mms.inbox() do
if mms.get(id)["time"]<lastweek then
mms.delete(id)

end
end

mms.get

• function get(msgnum)→ Array

Permissions: FreeComm+ReadApp

Compatibility of function mms.get

Symbian 3rd Edition phones: the file names returned by this call are
not directly accessible, use mms.open (p. 155) to read their data.

154 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 7.1. Module mms: Multimedia Messages

Get the contents of the message with number msgnum. The message
contents are returned as an array with the following keys:

Key Contents
sender The phone number (or other address) of the

sender of the message.
subject The subject of the message.
time The time stamp of the message, as seconds

since the start of year 0. See also module time

(p. 50).
unread true if the message is still unread, false if it

has been seen.
files The list of files comprising the message.

Throws ErrNotFound if the message with number msgnum does not
exist.

// play all MIDI files found in the MMS inbox
for id in mms.inbox() do
for f in mms.get(id)["files"] do
if len(f)>3 and substr(f,len(f)-4)=".mid" then
audio.play(f); audio.wait()

end
end

end

mms.inbox

• function inbox()→ Array

Permissions: FreeComm+ReadApp

Gets the ids of all MMS messages in the inbox.

print mms.inbox()
→ [1045642,1045678,1047382]

mms.open

• function open(msgnum,index)→ Native Object

Permissions: FreeComm+ReadApp

m Mobile Shell Library Version 3.00 155

7. Messaging c© 2008 airbit AG

Opens the attachment with index index, and returns a stream object to
read its data from. index is the index into msg.get(msgnum)[’files’].

The returned stream can be accessed with most functions from module
io (p. 36):

• io.read, io.readln, and io.readm read data,

• io.size gets the total number of bytes,

• io.avail gets the number of bytes remaining,

• io.seek changes the read position,

• io.close closes the stream,

• io.ces gets and sets the character encoding scheme.

// Copy all attachments of an MMS to a directory
function copyAttmts(msgnum, dir)
m=mms.get(msgnum);
for j=0 to len(m[’files’])-1 do
name=m[’files’][j];
name=substr(name, rindex(name, ’\\’)+1);
i=mms.open(msgnum, j);
print "Copying ",io.size(i),"bytes to",name;
o=io.create(dir+’\\’+name);
b=io.read(i, 256);
while b#null do
io.write(o, b); b=io.read(i, 256)

end;
io.close(i); io.close(o)

end
end

mms.receive

• function receive(timeout=-1)→ Number|null

Permissions: FreeComm+ReadApp

156 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 7.1. Module mms: Multimedia Messages

Receives a new message and returns its id. If there is no message, waits
until one arrives. If timeout>=0 and timeout milliseconds have passed
without receiving anything, returns null.

Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

// quickly check whether there is a new MMS
id=mms.receive(0);
if id#null then
msg=mms.get(id);
// process msg

end

mms.send

• function send(recipient, subject, files, sender=null)→
null

Permissions: CostComm+Read(files)

• function send(recipients, subject, files,
sender=null)→ null

Permissions: CostComm+Read(files)

Compatibility of function mms.send

Sony Ericsson phones: character
sets of attached files and the sender
cannot be set.

ErrNotSupported

Sends a multimedia message to one or several recipients. A single
recipient is specified as a single phone number string, multiple
recipients are specified as an array of phone number strings.

The message will get the subject subject. The files to be attached are
defined by files, an array with one element for each file to be sent.
Each element is:

• Either a string, directly denoting the file name, with automatically
derived MIME type and default character set,

• or an array of one to three elements, in the form

m Mobile Shell Library Version 3.00 157

7. Messaging c© 2008 airbit AG

[name,mimeType,charset]. name is a string denoting the file
name, mimeType (if not missing or null) is the MIME type of
the file, and charset (if not missing or null) is the character
set/encoding specified as an integer IANA MIB enum value.

A few important character sets/encodings:

MIB enum Description
3 US-ASCII
4 ISO-8859-1 (Latin 1)
5 ISO-8859-2 (Latin 2)
106 UTF-8
1000 ISO-10646-UCS-2 (‘‘Unicode’’)
1001 ISO-10646-UCS-4

If sender is not null, the From: field of the outgoing message is set to
sender. Note that most MMSCs will set this field to the MSISDN of the
sending device when receiving the MMS, so specifying a sender has no
effect unless you operate your own MMSC.

This function throws ErrNotFound if any of the files to be attached does
not exist.

This function returns as soon as the message has been placed in the
outbox. Actual sending may occur at a later time (‘‘store and forward’’
principle).

// find all m scripts
f=files.scan(system.docdir + "*.m");
// prepend the directory
for i=0 to len(f)-1 do
f[i]=system.docdir+f[i]

end;
// send all those files to two people
mms.send(["+41797654321", "+393401234567"],

"My mShell scripts", f);
// send all those files again, specifying a MIME type
// and Latin 1 character set
for i=0 to len(f)-1 do
f[i]=[f[i],’text/plain’,4]

end;
mms.send(["+41797654321", "+393401234567"],

"My mShell scripts", f);

158 m Mobile Shell Library Version 3.00

http://www.iana.org

c© 2008 airbit AG 7.2. Module msg: Generic Message Access

mms.set

• function set(msgnum, message)→ null

Permissions: FreeComm+WriteApp

Updates the short message with number msgnum with the fields from
message. The keys listed in mms.get (p. 154) must be used. The sender
and subject of the message will only be changed in the MMS inbox
summary; they cannot be changed in the actual message. files cannot
be changed at all.

// mark all MMS in the inbox as unread
for id in mms.inbox() do
mms.set(id, ["unread":true])

end

7.2 Module msg: Generic Message Access

This module provides generic access to the messages (e.g. SMS, MMS,
OBEX) stored on the phone.

The phone organizes messages into a hierachical tree of entries, much
like an ordinary file system. The most important entry types are folders,
messages and attachments. A typical message hierarchy could look as
follows:

Inbox Draft Outbox Sent

Attachment

MMS OBEXSMS

Local

Good morn... Hot pic

image.jpg
Attachment
mShell.sis

mShell.sis

type = msg.folder

type = msg.msg

type = msg.attmt

Each entry is identified by its unique id1. There are module constants for
the ids of the four main folders: msg.inbox, msg.draft, msg.outbox,

1These ids are the same as the ones used in module mms and module sms

m Mobile Shell Library Version 3.00 159

7. Messaging c© 2008 airbit AG

and msg.sent.

Note that the organization of folders is device dependent. For instance,
Sony Ericsson phones devices have dedicated service entries for MMS.
Scan from msg.root to obtain the complete hierarchy.

msg.delete

• function delete(entryOrId)→ null

Permissions: FreeComm+ReadApp+WriteApp

Delete the message entry identified by entryOrId. entryOrId can be a
complete entry, as returned by msg.scan, or simply an integer id.

Throws ErrNotFound if this entry does not exist.

for m in msg.scan(msg.sent, msg.msg) do
msg.delete(m)

end

msg.move

• function move(entryOrId,newParentEntryOrId)→ null

Permissions: FreeComm+ReadApp+WriteApp

Move the message entry identified by entryOrId from its current parent
to the entry identified by newParentEntryOrId. The latter is typically
a folder. Both parameters can be a complete entry, as returned by
msg.scan, or simply an integer id.

Throws ErrNotFound if this entry does not exist.

// move all .SIS file messages from the inbox to draft
for m in msg.scan(msg.inbox, msg.msg, "*.sis") do
msg.move(m, msg.draft)

end

msg.open

• function open(entryOrId,index=0)→ Native Object|null

Permissions: FreeComm+ReadApp

160 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 7.2. Module msg: Generic Message Access

Opens a message or attachment entry, and returns a stream object to
read the data at the given index from it. For attachment entries, the
data is the file data from the attachment with the given index. For other
entries, it is the message body, which has always index 0.

Returns null if the entry has no data to read.

The returned stream can be accessed with most functions from module
io (p. 36):

• io.read, io.readln, and io.readm read data,

• io.size gets the total number of bytes,

• io.avail gets the number of bytes remaining,

• io.seek changes the read position,

• io.close closes the stream,

• io.ces gets and sets the character encoding scheme. For mes-
sages, the default is io.utf16le and for attachments io.raw.

m Mobile Shell Library Version 3.00 161

7. Messaging c© 2008 airbit AG

// Copy an attachment from the inbox to a file.
function copyAttmt(name,file)
ms=msg.scan(msg.inbox, null, name);
// if there is no message, throw an exception
if len(ms)=0 then
throw "No message "+name

end;
// get the first attachment of the message
ms=msg.scan(ms[0], msg.attmt);
// if there is no attachment, throw an exception
if len(ms)=0 then
throw "No attachment for "+name

end;
i=msg.open(ms[0]);
print "Copying ",io.size(i),"bytes";
o=io.create(file);
b=io.read(i, 256);
while b#null do
io.write(o, b); b=io.read(i, 256)

end;
io.close(i); io.close(o)

end

msg.scan

• function scan(parent=msg.inbox,type=null,pattern="*")→
Array

Permissions: FreeComm+ReadApp

Scan the message entry identified by parent for its direct children.
parent can be a complete entry, as returned by this function, or simply
an integer id. type restricts the entry type to the given type (e.g.
msg.msg). If type=null, entries of all types are returned. pattern is
a pattern which the two entry descriptions must match. It is not case
sensitive and can contain the wildcards * and ?.

Returns an array with one element for each member found, each element
being an array with the following keys:

162 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 7.2. Module msg: Generic Message Access

Key Meaning Type
id Entry id Integer
descr Entry description (E.g. start of message text) String
descr2 Other description (E.g. message sender) String
time The time stamp of the message, as seconds since

the start of year 0. See also module time (p. 50).
Number

unread true if the message is still unread, false if it
has been seen.

Boolean

type Entry type Integer

// count the messages in the inbox
print len(msg.scan()),"messages"
→ 13 messages
// get the sent messages containing "morning"
for m in msg.scan(msg.sent, msg.msg, "*morning*") do
print m

end
→ [1048747,Good morning!,0779696969,63348191631,false,

268439402]
[1048748,This morning I can’t see you,0797654321,
63348191796,false,268439402]

msg Constants

• const attmt = The type indicating an attachment entry.
• const draft = The id of the folder with draft messages.
• const folder = The type indicating a folder entry.
• const inbox = The id of the folder with incoming messages.
• const local = The id of the service with local folders.
• const msg = The type indicating a message entry.
• const outbox = The id of the folder with outgoing messages.
• const root = The id of the root of the message entry hierarchy.
• const sent = The id of the folder with sent messages.

m Mobile Shell Library Version 3.00 163

7. Messaging c© 2008 airbit AG

7.3 Module obex: Object Exchange Client

This module supports sending and receiving of files via OBEX (Object
Exchange) over a Bluetooth R©link. The module provides the client side;
most Bluetooth equipped devices have an OBEX server which can accept
files (put operation of the client); some servers can also deliver files (get
operation of the client).

See also module bt (p. 125).

Usage of this module typically follows this pattern:

function btsend(files)
// have the user choose a device
dev=bt.select();
if dev#null then
adr=dev[’adr’];
// connect after getting the channel for the
// OBEX Push Service
obex.conn(adr, bt.chan(adr, obex.uuid)[0]);
// send all the files
for f in files do
obex.put(f)

end;
obex.close()

end
end

// send three files
btsend([’sample.dat’, ’moon.gif’, ’bells.mp3’])

obex.close

• function close()→ null

Permissions: FreeComm

Closes the connection to the server. Does nothing if there is no
connection.

164 m Mobile Shell Library Version 3.00

http://www.bluetooth.org

c© 2008 airbit AG 7.3. Module obex: Object Exchange Client

obex.conn

• function conn(adr, channel, password=null)→ String

Permissions: FreeComm

Connects to the OBEX server on the host with Bluetooth address adr,
on channel channel. If password#null, it will be used during OBEX
authentication.

The channel is normally obtained by querying the hosts service discovery
database via bt.chan (p. 130) for obex.uuid (p. 167).

If successful, returns the ‘‘who’’ name of the OBEX server.

dev="00:0E:07:C9:EE:88";
channel=bt.chan(dev, obex.uuid)[0];
print obex.conn(dev, channel)
→ peer2

obex.get

• function get(path, name=null)→ String

Permissions: Write(path)+FreeComm

Gets (pulls) a file from the server, storing it in path. The object (or file)
to be pulled is given by name. If name=null, it equals to path without
any directory components.

Note that not all servers support file pulling.

Throws ErrDisconnected if the client is not connected.

// get a vCard into the cards directory
obex.get(’\\cards\\William.vcf’, ’OwnCard.vcf’)

obex.path

• function path(name, create=false)→ null

Permissions: FreeComm

Changes the directory on the server to name. If name="..", changes to
the parent directory. If create=true, the directory is also created if it
doesn’t exist.

m Mobile Shell Library Version 3.00 165

7. Messaging c© 2008 airbit AG

Note that not all servers support directories.

Throws ErrDisconnected if the client is not connected.

// change to directory ’images’, creating it if required
path(’images’, true);
// change back to the parent
path(’..’)

obex.put

• function put(path, name=null, type=null,
description=null)→ null

Permissions: Read(path)+FreeComm

Puts (pushes) a file to the server, getting the data from file. The
name of the file on the server is given by name, its MIME type by type.
description is an optional description of the data for the server.

If name=null, it equals to file without any directory components.

If type=null, it is derived from the file extension for many important file
types.

Throws ErrDisconnected if the client is not connected.

// send a screen shot to the server
obex.put("c:\\Nokia\\Images\\Fe_img\\Fescr(0).jpg",

"myapp.jpg", "image/jpeg",
"Screen shot of my app")

obex.timeout

• function timeout()→ Number

Permissions: FreeComm

• function timeout(ms)→ Number

Permissions: FreeComm

Gets or sets the timeout used during most functions of this module.
Without arguments, returns the current timeout in milliseconds. With
one argument, returns the old timeout, and sets the new timeout to
ms. Setting the timeout to zero (the default) or a negative value disables

166 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 7.4. Module sms: Short Messages

timeouts, i.e. OBEX operations can block indefinitely, or use a timeout
defined by the underlying system.

The timeout is used in all following calls: whenever an operation
does not complete within the given number of milliseconds, it throws
ErrTimedOut.

Throws ExcValueOutOfRange if ms exceeds 2147483 (35 minutes and
47.483 seconds).

A timed out call will always close the OBEX connection; obex.conn

(p. 165) must be called to reconnect.

obex.who

• function who()→ String|null

Permissions: FreeComm

• function who(name)→ String|null

Permissions: FreeComm

Gets or sets the local ‘‘who’’ name for the next connection.

Without arguments, returns the current ‘‘who’’ name, or null if none is
set. With one argument, returns the old name and sets the new name
to name. Setting it to null disables sending the ‘‘who’’ name.

Some servers assume a special role if a certain name is presented. For
most purposes, you do not need to set a ‘‘who’’ name.

obex.who must be called before obex.conn (p. 165).

// set the "who" name to ’peer1’
obex.who(’peer1’)

obex Constants

• const uuid = 4357 The standard BT UUID for the Obex Push Service.

7.4 Module sms: Short Messages

This module supports sending and receiving of short messages.

m Mobile Shell Library Version 3.00 167

7. Messaging c© 2008 airbit AG

Messages are identified by numbers. These numbers are used to retrieve
and update message contents, and to delete messages.

When a function of the module is called for the first time, it starts
listening for incoming messages and enqueues their numbers. Calling
sms.receive will return these numbers. Messages received earlier can
be retrieved from the inbox.

Messages longer than the maximum length (160 characters in the
default alphabet) can also be sent and received. They are transmitted as
‘‘concatenated SMS’’, but the module handles this automatically.

The typical sequence to consume messages starting with a certain token
(//tok in our example) is:

nr=sms.receive(); // wait for a new message
msg=sms.get(nr); // get the message
words=split(msg["text"]); // split the text into words
if len(words)>0 and words[0] = "//tok" then
// first word is //tok, delete it from inbox
sms.delete(nr);
// process message

end

sms.delete

• function delete(msgnum)→ null

Permissions: WriteApp+FreeComm

Delete the message with number msgnum from the inbox.

Throws ErrNotFound if the message with this number does not exist.

// delete all SMS inbox messages older than a week
lastweek=time.get()-7*24*3600;
for id in sms.inbox() do
if sms.get(id)["time"]<lastweek then
sms.delete(id)

end
end

168 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 7.4. Module sms: Short Messages

sms.get

• function get(msgnum)→ Array

Permissions: ReadApp+FreeComm

Get the contents of the message with number msgnum. The message
contents are returned as an array with the following keys:

Key Contents
sender The phone number of the sender of the mes-

sage.
text The text of the message.
time The time stamp of the message, as seconds

since the start of year 0. See also module time

(p. 50).
unread true if the message is still unread, false if it

has been seen.

Throws ErrNotFound if the message with number msgnum does not
exist.

// print all messages in the SMS inbox
for id in sms.inbox() do
print sms.get(id)

end
→ [248,Delivery confirmation,63277873561,false]

...

sms.inbox

• function inbox()→ Array

Permissions: ReadApp+FreeComm

Gets the ids of all SMS messages in the inbox.

print sms.inbox()
→ [1049241,1049289,1049292]

m Mobile Shell Library Version 3.00 169

7. Messaging c© 2008 airbit AG

sms.receive

• function receive(timeout=-1)→ Number|null

Permissions: ReadApp+FreeComm

Receives a new message and returns its id. If there is no message, waits
until one arrives. If timeout>=0 and timeout milliseconds have passed
without receiving anything, returns null.

Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

// quickly check whether there is a new message
id=sms.receive(0);
if id#null then
msg=sms.get(id);
// process msg

end

sms.send

• function send(recipient, message, bits=7)→ null

• function send(recipients, message, bits=7)→ null

Permissions: CostComm

Sends a short message to one or several recipients. A single recipient

is specified as a single phone number string, multiple recipients are
specified as an array of phone number strings.

bits indicates the number of bits used to encode a character, thus
limiting the length of a simple message. Longer messages will be
concatenated from several simple messages, thus increasing transmission
cost. The allowed values are:
bits Meaning Max. length

7 Default text alphabet 160
8 Data alphabet 140

16 Unicode alphabet 70

This function does not return before the message has been sent (or an
error occurs).

170 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 7.4. Module sms: Short Messages

// send a silly message to two people
sms.send(["+41797654321", "+393401234567"],

"Good morning!")

sms.set

• function set(msgnum, message)→ null

Permissions: WriteApp+FreeComm

Updates the short message with number msgnum with the fields from
message. The keys listed in sms.get (p. 169) must be used. The sender
and text of the message will only be changed in the SMS inbox summary;
they cannot be changed in the actual message.

// mark all messages in the inbox as unread
for id in sms.inbox() do
sms.set(id, ["unread":true])

end

m Mobile Shell Library Version 3.00 171

7. Messaging c© 2008 airbit AG

172 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

8. Multimedia

8.1 Module audio: Audio Functions

This module provides audio functions: generating synthetic beeps and
DTMF sequences, playing most audio file types (e.g. MP3), and recording
and editing AU format, WAV format or AMR-NB format files.

To directly play an existing audio file, use audio.play (p. 178).

To play parts of a file or record to a file, use audio.open (p. 176),
followed by calls to audio.play (p. 178), audio.record (p. 179) and
audio.stop (p. 180).

Each file has a recorded length (its ‘‘duration’’) and the ‘‘head position’’
the player is at or will start at. Both are measured in milliseconds.
audio.len (p. 176) and audio.pos (p. 179) access them. audio.cut

(p. 175) cuts a part out of a recording.

Please note: while it is possible to record phone conversations on most
devices using this module, due to limitations in the underlying Symbian
OS APIs, sound cannot be sent to a phone uplink on some devices.
The behaviour when playing tones or sound during a phone call varies
between devices; some will throw ErrInUse, others will simply mute
the sound. UIQ devices generally do not support playing sounds when a
phone call is in progress.

audio.beep

• function beep(hz=880, ms=800)→ null

Plays a synthetic beep with frequency hz Hertz for a duration of ms

milliseconds.

This function immediately returns, before playing completes. Exceptions
can therefore be thrown anywhere in the following code.

Throws ErrInUse if the sound unit is busy playing or recording another

m Mobile Shell Library Version 3.00 173

http://www.symbian.com
http://www.symbian.com

8. Multimedia c© 2008 airbit AG

sound. Throws ExcValueOutOfRange if the frequency is not positive.

audio.beep(440, 1000)

audio.busy

• function busy()→ Boolean

Returns true if the last playing function (audio.beep, audio.dtmf,
audio.play) is still producing sound, or if sound is still being recorded
(after audio.record). Returns false otherwise.

This function checks only the current m process: it will return false if
the sound unit is in use by another process (inside or outside of m).

audio.beep(440, 1000);
while audio.busy() do
io.print(io.stdout, ’.’); sleep(200)

end;
print "beep ended"
→beep ended

audio.close

• function close()→ null

Closes the currently accessed audio file.

Throws ErrInUse if the file is being played or recorded. Thus, to forcibly
close a file, use:

audio.stop();
audio.close()

174 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 8.1. Module audio: Audio Functions

audio.cut

• function cut(start, end=0)→ null

Compatibility of function audio.cut

Sony Ericsson UIQ2 phones cannot
truncate at the beginning, start=0
is mandatory.

ErrNotSupported

Sony Ericsson UIQ3 phones cannot
truncate at all.

ErrNotSupported

Cuts the current audio file at the beginning and/or end. The initial start
milliseconds and the final end milliseconds will be removed.

Throws ErrInUse if the file is being played or recorded,
ErrAccessDenied if the file has not been opened for writing, and
ErrArgument if any of the cropped parts are outside the current file.

// truncate the current file by 10% on both ends
audio.cut(0.1*audio.len(), 0.1*audio.len())

audio.dtmf

• function dtmf(digits)→ null

Compatibility of function audio.dtmf

Some Nokia phones do not prop-
erly produce DTMF tones, and may
set the tone playing device into an
erroneous state.

A call to audio.stopmay be
required to reset the device.

Plays the string digits as DTMF (dual-tone multi-frequency) tones (‘‘tone
dialling’’). Valid characters for digits are 0 to 9, A to D, # and *. All other
characters are ignored.

Throws ErrInUse if the sound unit is busy playing or recording another
sound.

// play with ascending high frequency
audio.dtmf(’147*2580369#ABCD’)

m Mobile Shell Library Version 3.00 175

8. Multimedia c© 2008 airbit AG

audio.len

• function len()→ Number

Returns the length (‘‘duration’’) of the current file, in milliseconds.

Throws ErrNotReady if no file has been opened.

audio.open

• function open(file,flags=0,rate=8000)→ Number

Permissions: Read(file) / Read+Write(file)

Compatibility of function audio.open

Nokia phones and Sony Ericsson
UIQ2 phones do not support AMR-
NB format for recording.

ErrNotSupported

Sony Ericsson UIQ3 phones do not
support WAV and AU formats for
recording.

ErrNotSupported

Sony Ericsson UIQ3 phones cannot
handle file suffixes other than .amr

when recording.

ErrNotFound,
ErrNotSupported

Opens or creates a file for playing and/or recording, and returns the
length of the file (‘‘duration’’) in milliseconds.

Whether the file is opened or created is determined by flags:

• const rw = 1 Open an existing file for recording.
• const wav = 2 Create a file in Microsoft’s WAV format.
• const au = 3 Create a file in Sun’s AU format.
• const amr = 4 Create a file in AMR-NB format (Adaptive Multi-Rate,
Narrow Band).

When creating a file, you may combine audio.wav or audio.au with
one of the following flags selecting the codec:

• const alaw = 0 Use A-law compression (13-bit to 8-bit) codec.
• const mulaw = 16 Use µ-law compression (13-bit to 8-bit) codec.
• const pcm8 = 32 Use 8-bit direct pulse-code modulation codec.
• const pcm16 = 48 Use 16-bit direct pulse-code modulation codec.

176 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 8.1. Module audio: Audio Functions

• const ima = 64 Use IMA adaptive differential PCM codec.

audio.amr only supports its own codec.

To summarize: audio.open acts according to the following scheme:

• If flags=0 (the default), opens the file for playing. Attempts to
record to it or to truncate it will throw ErrAccessDenied.

• If flags contains audio.rw, opens the file for playing and record-
ing. Format, codec and sample rate will be taken from the existing
file.

• If flags contains audio.wav or audio.au, creates a new file in
WAV or AU format, and the specified codec is chosen. rate

indicates the sample rate in Hz (samples per second). The sample
rates supported depend on codec and device.

For a newly created file in WAV or AU format, the default codec is
A-law.

Throws ErrInUse if a file is already being played or recorded.

// Create a new file with default codec and sample rate
file=’sample.wav’;
audio.open(file, audio.wav);
// record sound until the file exceeds 200 kB
audio.record();
while files.size(file)<=200000 do
sleep(1000)

end;
audio.stop();
print ’Recorded’,audio.len(),’ms in ’,
files.size(file),’bytes.’;

print files.size(file)/audio.len(),’ kB/s’
→ Recorded 25260 ms in 202124 bytes.
→ 8.0017418844 kB/s
// play the file
audio.play(); audio.wait()

m Mobile Shell Library Version 3.00 177

8. Multimedia c© 2008 airbit AG

// Do the same in full lossless CD quality
audio.open(file, audio.wav | audio.pcm16, 44100);
// record sound until the file exceeds 200 kB
audio.record();
while files.size(file)<=200000 do
sleep(1000)

end;
audio.stop();
print ’Recorded’,audio.len(),’ms in ’,
files.size(file),’bytes.’;

→ Recorded 2900.158 ms in 255838 bytes.
→ 88.215193793 kB/s

audio.play

• function play()→ null

• function play(file)→ null

Permissions: Read(file)

Without argument, starts or continues playing the currently open sound
file.

With one argument, directly starts playing a sound file (.mp3, .wav, .au
or such). The file name is relative to the current directory (see 1.2 (p. 4)).
When the sound file has finished playing, it is closed.

This function immediately returns, before playing completes. Excep-
tions can therefore be thrown anywhere in the following code. Use
audio.wait (p. 181) to wait for completion.

Throws ErrInUse if the sound unit is busy playing or recording another
sound.

Without argument, throws ErrNotReady if no file has been opened, and
throws ErrArgument if the current playing position is outside the file.

audio.play("c:\\documents\\audio\\Hello.mp3")

178 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 8.1. Module audio: Audio Functions

audio.pos

• function pos()→ Number

• function pos(ms)→ Number

Without arguments, returns the playing position in the current file, in
milliseconds form the start.

With one argument, set the playing position to ms milliseconds.

Throws ErrNotReady if no file has been opened.

With one argument, throws ErrInUse if the file is being played or
recorded.

// Open a file and play seconds 5 to 12
audio.open(’sample.wav’);
audio.pos(5000);
audio.play();
sleep(7000);
print audio.pos();
audio.stop()
→ 11850

audio.record

• function record(gain=100)→ null

Compatibility of function audio.record

Sony Ericsson phones cannot record
phone conversations

ErrInUse

Sony Ericsson phones do not re-
liably detect unsupported sample
rates, resulting in mismatches be-
tween sampled and played rates.
Sony Ericsson UIQ3 phones do not
support any seeking when record-
ing. Calls to audio.pos are mean-
ingless when recording.

Record sound from the microphone or from an ongoing phone con-
versation (mixing microphone and incoming phone signal). gain is the

m Mobile Shell Library Version 3.00 179

8. Multimedia c© 2008 airbit AG

recording gain, a number between 0 (minimum or automatic) and 100
(maximum). Default gain is 100. Setting the gain to a negative value sets
it to 0, setting it to a value greater than 100 sets it to 100.

The audio data is appended to the current file. Use audio.cut (p. 175)
to truncate the file and set the recording position.

This function immediately returns, before recording completes. Excep-
tions can therefore be thrown anywhere in the following code. Use
audio.stop (p. 180) to stop recording.

Throws ErrInUse if a file is already being played or recorded. Throws
ErrNotSupported if the file format does not support recording, or if the
sample rate is not supported.

To add 20 seconds of recorded sound at the end of an existing audio file
sample.wav:

audio.open(’sample.wav’, audio.rw);
audio.record();
sleep(20000);
audio.stop()

audio.stop

• function stop()→ null

Stops the currently playing sound, or the current recording.

audio.volume

• function volume()→ Number

• function volume(percent)→ Number

Returns the current sound output volume and optionally changes it. The
volume is a number between 0 (mute) and 100 (loudest). Default volume
is 50. Setting the volume to a negative value sets it to 0, setting it to a
value greater than 100 sets it to 100.

On most devices, changing the volume while a sound is playing has
immediate effect.

180 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 8.2. Module cam: Onboard Camera

audio.play("c:\\documents\\audio\\HomeBox.mp3");
while audio.busy() do
sleep(100);
audio.volume(audio.volume()-10) // fade out

end

audio.wait

• function wait()→ null

Waits until playing completes. Returns immediately if no sound is playing.

This function checks only the current m process: it will return immediately
if the sound unit is in use by another process (inside or outside of m).

for i=1 to 10 do
audio.wait(); audio.beep(440, 500);
audio.wait(); audio.beep(330, 500)

end

8.2 Module cam: Onboard Camera

This module provides access to the onboard camera for still images.
Pictures taken can be processed or saved by module module graph

(p. 57).

Since the camera is a shared resource and consumes battery power,
it must be turned on before use by cam.on (p. 185) and turned off
afterwards by cam.off (p. 185). A typical example using the camera
might look as follows:

m Mobile Shell Library Version 3.00 181

8. Multimedia c© 2008 airbit AG

// show the available image sizes
for s in cam.sizes() do
print s

end
→ [1280,960]

[640,480]
[160,120]

// turn the camera on for 640x480 size images
cam.on(1)
// produce a dark, contrast rich picture
cam.bright(-20); cam.contrast(30)
→ 0

0
// display a view finder close to the top left corner
cam.view(10,10)
// take an image
icon=cam.take()
// turn the camera off
cam.off()
// save the image via the graph module
s=graph.size(icon); // get the image size
graph.size(s[0], s[1]); // make graph big enough
graph.put(0,0,icon); // draw the image
graph.save("keyboard.jpg") // save it

Sample m screen

182 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 8.2. Module cam: Onboard Camera

cam.bright

• function bright()→ Number

• function bright(b)→ Number

Gets or sets the brightness of the image taken. The brightness is a
number between -100 (very dark) and 100 (very bright). Standard
brightness is 0.

Without arguments, returns the currently used brightness. With one
argument, returns the old brightness, and sets the new brightness to b.

Throws ErrInUse or ErrNotReady if the camera has not been turned
on.

// show the view finder, increasing brightness
cam.on()
cam.view()
for b=-100 to 100 by 10 do
cam.bright(b); sleep(1000)

end;
cam.off()

cam.contrast

• function contrast()→ Number

• function contrast(c)→ Number

Gets or sets the contrast of the image taken. The contrast is a number be-
tween -100 (minimum contrast) and 100 (maximum contrast). Standard
contrast is 0.

Without arguments, returns the currently used contrast. With one
argument, returns the old contrast, and sets the new contrast to c.

Throws ErrInUse or ErrNotReady if the camera has not been turned
on.

m Mobile Shell Library Version 3.00 183

8. Multimedia c© 2008 airbit AG

// show the view finder, increasing contrast
cam.on()
cam.view()
for c=-100 to 100 by 10 do
cam.contrast(c); sleep(1000)

end;
cam.off()

cam.index

• function index()→ Number

• function index(camIndex)→ Number

Compatibility of function cam.index

Sony Ericsson UIQ3 phones (P990)
have no public API for the front
camera (index 1)

cam.sizes returns []

On devices with more than one built-in camera, selects the camera to
operate on. The camera index must be greater than or equal to 0 and
less than cam.count (p. 188).

Without arguments, returns the index of the currently used camera. With
one argument, turns the old camera off, returns the old index, and sets
the new camera index.

By default, the first camera (index 0) is selected.

Throws ExcIndexOutOfRange if the camera does not exist.

// select the 2nd camera, if there is one
if cam.count> 1 then
cam.index(1)

else
print "No second camera"

end

184 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 8.2. Module cam: Onboard Camera

cam.off

• function off()→ null

Removes the view finder if it is shown, and turns the camera off. Does
nothing if the camera is already off.

cam.on

• function on(sizeIndex=0)→ null

Turns the camera on and prepares it for taking images of the size
cam.sizes()[sizeIndex].

Throws ExcIndexOutOfRange if sizeIndex is less than 0 or greater
than the cam.sizes() - 1.

Throws ErrInUse if the camera is already on, or used by another
application.

cam.sizes

• function sizes()→ Array

Returns the available image sizes, as an array of arrays containing
image width and image height. The actual sizes returned are hardware
dependent.

The camera does not have to be on to obtain the image sizes.

On some devices, the setting of the screen mode (ui.mode (p. 93)) has
an effect on the available sizes. For instance, maximum resolution might
only be available in landscape mode.

for s in cam.sizes() do
print s

end
→ [640,480]

[320,240]
[160,120]

m Mobile Shell Library Version 3.00 185

8. Multimedia c© 2008 airbit AG

cam.take

• function take()→ Native Object

• function take(jpegpath,quality=75)→ null

Permissions: Write(jpegpath)

Compatibility of function cam.take

Sony Ericsson UIQ2 phones if
cam.view has not been called.

ErrInUse

Without arguments, takes an image of the configured size, brightness
and contrast and returns it as an icon (see graph.icon (p. 71)). The
icon can be saved, scaled, or analyzed using functions in module graph

(p. 57).

With one or two arguments, takes an image of the configured size,
brightness and contrast and saves it directly to file jpegpath, compress-
ing for the given quality. quality must be between 1 and 100. No
icon is produced in this case.

Throws ErrInUse or ErrNotReady if the camera has not been turned
on.

Throws ExcValueOutOfRange if the JPEG quality is out of range.

i=cam.take();
print i
→ icon@4186d8
// scale the image to one quarter and display it
graph.size(i,0.5)
→ [640,480]
graph.put(0,0,i)
graph.show()

186 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 8.2. Module cam: Onboard Camera

Sample m screen

// take an image and save it to snapshot.jpg
cam.take(’snapshot.jpg’)

cam.view

• function view(x=0,y=0,w=160,h=120)→ Array

Compatibility of function cam.view

Sony Ericsson UIQ3 phones blacken the entire window when show-
ing the view finder.

Shows a view finder (the image currently seen by the camera) on the
screen at coordinates (x,y), in a rectangle of roughly width w and height
h. (0,0) is at the upper left corner of the m application view.

Returns the actual size of the rectangle used.

Throws ErrInUse or ErrNotReady if the camera has not been turned
on.

Throws ErrNotSupported if the requested view finder size is not sup-
ported.

m Mobile Shell Library Version 3.00 187

8. Multimedia c© 2008 airbit AG

// show the view centered on the graph view
gs=graph.size();
cam.on();
vs=cam.view();
x=math.trunc((gs[0]-vs[0])/2);
y=math.trunc((gs[1]-vs[1])/2);
// draw a frame around the view
graph.rect(x-2,y-2,vs[0]+4,vs[1]+4);
graph.show();
cam.view(x, y)

Sample m screen

cam Constants

• const count = The number of cameras available. On some devices,
some cameras may be unaccessible via this module.

8.3 Module video: Playing Videos

Compatibility of module video

Sony Ericsson UIQ2 phones do not
offer a public video playing API.

Source file for module not
found

188 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 8.3. Module video: Playing Videos

This module provides functions to play recorded videos on the device
screen and audio. Supported video file formats depend on the device,
but generally include standard MP4 formats.

Each file has a recorded length (its ‘‘duration’’) and the ‘‘head position’’
the player is at or will start at. Both are measured in milliseconds.

The video is shown on top of any other screen contents. Both the source
region of the video frames and the destination region on the screen can
be defined. Within certain limits, the video will then be scaled to match
the requested regions.

A simple sequence to a play a video file is:

// open the video file
video.open(’FasterThanMyShadow.mp4’);
// start playing it
video.play();
// wait until playing has finished
video.wait()

video.busy

• function busy()→ Boolean

Returns true if the video is still playing. Returns false otherwise.

This function checks only the current m process: it will return false if
another process is playing a video.

video.play();
while video.busy() do
print "at",video.pos(),"ms";
sleep(1000)

end;
print "video replay ended"
→ at 600 ms

at 1600 ms
at 2700 ms
at 3800 ms
video replay ended

m Mobile Shell Library Version 3.00 189

8. Multimedia c© 2008 airbit AG

video.close

• function close()→ null

Closes the currently accessed video file and frees all resources.

Throws ErrInUse if the file is being played. Thus, to forcibly close a file,
use:

video.stop();
video.close()

video.hide

• function hide()→ null

Hides the video display. This can be called after video.stop to hide the
last frame shown. If the video is playing, hiding results only in a short
flicker or has no effect at all.

See also video.show (p. 192).

video.open

• function open(file)→ Array

Permissions: Read(file)

Opens a file for playing, and returns an array describing the video:

Key Meaning Type
len Duration of the video in milliseconds String
size Width an height of the video frames (pixels) Array
type MIME file type of the video String
fps Frame rate (frames per second) Number
audio Does the video have audio data Boolean

The source region is set to the whole frame, and the destination region
to the entire screen. See video.view (p. 193) for more information
about source and destination regions.

Throws ErrInUse if a file is already being played.

190 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 8.3. Module video: Playing Videos

v=video.open(’FasterThanMyShadow.mp4’);
for k in keys(v) do
print k,v[k]

end
→ len 6919

size [320,240]
type video/MP4V-ES
fps 24
audio true

video.play

• function play()→ null

Starts or continues playing the currently open video file in the current
view setting.

This function immediately returns, before playing completes. Excep-
tions can therefore be thrown anywhere in the following code. Use
video.wait (p. 194) to wait for completion.

Throws ErrInUse if the video unit is busy playing another video.

Throws ErrNotReady if no file has been opened,

video.pos

• function pos()→ Number

• function pos(ms)→ Number

Without arguments, returns the playing position in the current file, in
milliseconds form the start.

With one argument, set the playing position to ms milliseconds.

Throws ErrNotReady if no file has been opened.

With one argument, throws ErrInUse if the file is being played or
recorded.

m Mobile Shell Library Version 3.00 191

8. Multimedia c© 2008 airbit AG

// Open a file and play seconds 5 to 12
video.open(’sample.mp4’);
video.pos(5000);
video.play();
sleep(7000);
video.stop();
print video.pos()
→ 11600

video.show

• function show()→ null

Shows the last shown frame again. This can be useful if the video is
stopped or paused and the screen has been changed otherwise, clearing
or hiding the video display.

Throws ErrNotReady if no file has been opened.

See also video.hide (p. 190).

video.stop

• function stop()→ null

Stops (or pauses) the currently playing video at the current position,
without hiding it.

video.volume

• function volume()→ Number

• function volume(percent)→ Number

Returns the current sound output volume and optionally changes it. The
volume is a number between 0 (mute) and 100 (loudest). Default volume
is 50. Setting the volume to a negative value sets it to 0, setting it to a
value greater than 100 sets it to 100.

On most devices, changing the volume while a sound is playing has
immediate effect.

192 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 8.3. Module video: Playing Videos

v=video.play("c:\\documents\\video\\HomeBox.mp4");
while video.busy() do
sleep(100);
if video.pos()>v["len"]-2000 then
video.volume(video.volume()-5) // fade out

end
end

video.view

• function view()→ Array

• function view(settings)→ Array

Compatibility of function video.view

Rotating the video is not supported
on all devices

rot is ignored

Gets or sets the source (video) and destination (screen) region settings for
playing videos. Without an argument, returns the current settings. With
one argument, sets the new settings according to the array elements
found in settings, and returns the old settings.

Settings are specified as an array:

Key Meaning Type
src Video rectangle to show ([x,y,w,h]) Array
dst Screen rectangle to show video in ([x,y,w,h]) Array
rot Rotate the video by this times 90 degrees Number

v=video.open(’FasterThanMyShadow.mp4’);
// squeeze the video into the upper left quadrant
view=video.view();
view[’dst’][2]=v[’size’][0] / 2;
view[’dst’][3]=v[’size’][1] / 2;
video.view(view);
// show only the upper half of the video
r=[0,0,v[’size’][0],v[’size’][1]/2];
view.view([’src’:r,’dst’:r])

m Mobile Shell Library Version 3.00 193

8. Multimedia c© 2008 airbit AG

video.wait

• function wait()→ null

Waits until playing completes. Returns immediately if no video is playing.

This function checks only the current m process: it will return immediately
if a video is played by another process (inside or outside of m).

194 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

9. Telephony

9.1 Module gsm: GSM information

This module provides access to GSM (Global System for Mobile com-
munication) related information. This includes identifiers and network
information.

Please note that not all functions of this module are supported on all
devices. Some functions may throw ErrNotSupported.

gsm.cid

• function cid()→ Number

Permissions: ReadApp

Capabilities: extended

Gets the current CID (Cell Identity). Roughly speaking, a cell identifies the
location of the phone: in a simplified view, each GSM cell corresponds
to an antenna the phone is communicating with1. In cities, cells identify
the location of the phone with a precision of a few hundred meters or
even less. In remote locations, in particular on mountains, the distance
to the antenna can be ten or more kilometers.

In practice, a specific location (e.g. an office) is typically covered by more
than one cell, so the CID may change even if the phone doesn’t move.

According to GSM specs, the CID is a number between 0 and 65535 for
GSM cells, and a number greater than 65535 on UTMS cells.

print gsm.cid()
→ 17437

1Usually, a single BTS (base transceiver station) covers multiple cells via sectorial antennas
mounted on a single antenna tower.

m Mobile Shell Library Version 3.00 195

9. Telephony c© 2008 airbit AG

gsm.net

• function net()→ Array

Permissions: ReadApp

Capabilities: extended

Gets the current network as an array with the following keys:

Key Contents
mcc Mobile Country Code (MCC)
mnc Mobile Network Code (MNC)
short Short Network Name
long Long Network Name
lac Location Area Code (LAC)

To identify the current provider, MCC and MNC should be used. MCC
and MNC of the home network are identical to the first three and two
digits of the IMSI (see gsm.imsi (p. 197)).

Short and long name come from a database stored in the phone, so they
may differ between phones for the same network.

n=gsm.net();
print n
→ 228,1,Swisscom,Swisscom,1616]
print 100*n["mcc"]+n["mnc"]
→ 22801
print substr(gsm.imsi,0,5)
→ 22801

gsm.new

• function new(timeout=-1)→ Boolean

Permissions: ReadApp

Capabilities: extended

Waits until the current location information (typically the cell) changes,
or until timeout milliseconds passed, if timeout>=0.

Returns true if the location information changed, or false if the timeout
expired.

196 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 9.1. Module gsm: GSM information

Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

The following code fragment waits ten seconds for a change in the
location information, and prints the new cell if it changed.

if gsm.new(10000) then
print "In cell",gsm.cid()

end

gsm.signal

• function signal()→ Number

Permissions: ReadApp

Compatibility of function gsm.signal

Sony Ericsson UIQ3 phones do not
support this API.

Call returns 0.

Gets the strength of the signal in the current network. The meaning of
the returned value is device dependent. It may be a number between 0
(no signal) and 100 (strongest), or it may correspond to the number of
signal strength bars normally shown on the display.

print gsm.signal()
→ 89

gsm Constants

• const imei = phone identifier

This constant contains the IMEI (International Mobile Equipment Identity)
for the device m is running on. The IMEI is a fifteen digit unique identifier
assigned to each device (cellphone). This number can also be queried
directly by dialing *#06# on the phone.

print gsm.imei
→ 355023001234567

• const imsi = subscriber identifier

m Mobile Shell Library Version 3.00 197

9. Telephony c© 2008 airbit AG

Capabilities: extended

Compatibility of constant imsi
Nokia 6600: the IMSI cannot be
obtained.

imsi=000000000000000

This constant contains the the IMSI (International Mobile Subscriber
Identity) for the SIM card of the device m is running on. The IMSI is an up
to fifteen digit unique identifier assigned to each subscriber (SIM card).

print gsm.imsi
→ 228011234567890

• const number = own phone number

Contains the own phone number, usually with country prefix.

print gsm.number
→ +41791234567

9.2 Module phone: Phone Calls

This module allows to monitor and make voice phone calls. The module
can monitor at most one call at the same time. The following diagram
depicts the relationship between states and functions:

state(idle)

hangup()

dial()new()
hangup()

Idle Active

user answers:
Ringing state(active)

answer()

user dials:
new()

198 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 9.2. Module phone: Phone Calls

• If phone.new (p. 200) detects an incoming call, this new
call is phone.ringing (p. 202). It can either be answered
via phone.answer (p. 199) or by the user, or rejected via
phone.hangup (p. 200) or by the user. Once the call has been
answered, it becomes phone.active (p. 202).

• If phone.new detects an outgoing call dialled by the user, or
phone.dial (p. 199) successfully establishes one, the call also
becomes phone.active.

• An active call can be terminated explicitly via phone.hangup.
Alternatively, phone.state (p. 201) can wait for it becoming
phone.idle (p. 202), i.e. for its termination.

phone.answer

• function answer()→ null

Permissions: FreeComm

Answers an incoming (ringing) call by accepting it. This should be called
after phone.new (p. 200) returns with an incoming call. See there for an
example.

Throws ErrDisconnected if the there is no current call.

phone.dial

• function dial(number, timeout=-1)→ Boolean

Permissions: FreeComm+CostComm

Dials the given phone number to establish a voice call. If timeout>=0,
waits at least timeout milliseconds before giving up. Returns true if the
call could be established and the remote party has answered, or false
if the timeout was reached.

Throws ErrInUse if a call is already active.

Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

m Mobile Shell Library Version 3.00 199

9. Telephony c© 2008 airbit AG

// make a one minute call to +41797654321
if phone.dial("+41797654321", 30000) then
sleep(60000);
phone.hangup()

end

phone.hangup

• function hangup()→ null

Permissions: FreeComm

Compatibility of function phone.hangup

Symbian 3rd Edition phones: a call which is phone.ringing cannot
be hung up without answering it first. Calling phone.hangup on
a ringing call will answer it first and then immediately hang up,
potentially causing costs for the caller.

Disconnects the current call (‘‘hangs up’’ the phone).

Throws ErrDisconnected if there is no current call.

Does not hang up a call which was not made via phone.dial (p. 199)
or obtained via phone.new (p. 200).

phone.ms

• function ms()→ Number

Permissions: FreeComm

Gets the duration of the current call in milliseconds.

Throws ErrDisconnected if there is no current call.

See phone.state (p. 201) for an example.

phone.new

• function new(timeout=-1)→ Array|null

Permissions: FreeComm

Waits for a new call (incoming or outgoing), and returns an array with

200 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 9.2. Module phone: Phone Calls

the following fields:

Key Meaning Type
incoming true for incoming, false for outgoing Boolean
number Phone number of remote party String

If timeout>=0, waits at least timeout milliseconds before giving up.
Returns null if the timeout was reached.

Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

// reject all incoming calls from +41797654321
while true do
c=phone.new();
if c["incoming"] then
if c["number"]="+41797654321" then
// we reject this call
phone.hangup()

else
// other calls are accepted
phone.answer()

end
end

end

phone.state

• function state(mask=phone.idle | phone.ringing |
phone.active, timeout=-1)→ Number|null

Permissions: FreeComm

Waits until the current call enters one of the states in mask, and returns
the current state. If timeout>=0, waits at least timeout milliseconds
before giving up and returning null.

Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

Throws ErrDisconnected if there is no current call.

m Mobile Shell Library Version 3.00 201

9. Telephony c© 2008 airbit AG

// log number and duration of each outgoing call
while true do
c=phone.new();
if not c["incoming"] then
// wait until the call becomes idle again
phone.state(phone.idle);
print phone.ms(),"ms call to",c["number"]

end
end

phone Constants

• const idle = 1 The call is idle, i.e. was hung up.
• const ringing = 2 A call is coming in and must be answered.
• const active = 4 A call is active.

202 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

10. Applications and
Processes

10.1 Module app: Application Control

This module provides access to the applications installed on the phone:
listing installed applications, opening documents, starting and stopping
applications, and bringing them to the foreground or sending them to
the background.

Functions in this module are specific to Symbian OS, and not likely to be
portable to other operating systems.

In Symbian OS, each application has its unique UID (unique identifier),
which is simply an integer number. In the functions of this module, an
application is identified by its UID or its name (caption). Since the caption
is language and installation dependent, the UID is generally preferrable.
Application UIDs and captions may also vary between different devices.

Since m itself is also an application, the functions in this module can also
be used to bring m to the foreground, send it to background, or simply
stop it. The app.uid (p. 208) constant identifies the m application.

app.find

• function find(name=null)→ Array

Permissions: ReadApp

Searches for applications whose name matches the pattern name. name is
not case sensitive and can contain the wildcards * and ?. If name=null,
searches for all installed applications.

Returns an array with one element for each application found, each
element being an array with the following keys:

m Mobile Shell Library Version 3.00 203

http://www.symbian.com
http://www.symbian.com

10. Applications and Processes c© 2008 airbit AG

Key Meaning Type
name Application name (caption) String
file Application DLL file name String
uid Application UID Integer

// search for the mShell application
for a in app.find("mShell") do
print a

end
→ [mShell,C:\System\Apps\mShell\mShell.app,270549657]

app.hide

• function hide(uidOrName)→ null

Permissions: ReadApp

Hides the application identified by uidOrName, i.e. sends it to the
background. uidOrName can be the application’s UID, or its name
(caption).

Throws ErrNotFound if the application does not exist.

// hide the messaging application
app.hide("Messaging")

app.key

• function key(scancodes)→ null

Permissions: ReadApp+WriteApp

Capabilities: extended

• function key(keycodes, uidOrName)→ null

Permissions: ReadApp+WriteApp

Capabilities: extended

Sends a keyboard event or a series of keyboard events to the device or
to a specific application.

With one argument, sends scancodes to the device. scancodes can
be a single integer, an array of integers, or a string. A positive integer

204 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 10.1. Module app: Application Control

causes a press of the key with this scan code, a negative integer a release
of the key with this scan code (after changing its sign). Scan codes are
OS and device specific. Use ui.cmd (p. 83) after calling ui.keys(true)

to obtain the scan code for a specific key.

With two arguments, sends keycodes to the application defined by
uidOrName. keycodes can be a single integer, an array of integers, or
a string. Each integer or character causes a stroke of the key with this
code. Most key codes correspond to character codes, but some codes
are reserved for device specific keys. Use ui.cmd (p. 83) after calling
ui.keys(false) to obtain the key code for a specific key.

// Start the contacts application and send it a name
app.start("Contacts"); app.key("William", "Contacts")
// Simulate flip close and open on UIQ
app.key(0x77); sleep(2000); app.key(0x76)
// Show profile selection via power key on S60
app.key([0xa6, -0xa6])

app.open

• function open(file, uidOrName=null)→ Number

Permissions: Read+Write(file)+ReadApp+WriteApp

Compatibility of function app.open

Sony Ericsson UIQ3 phones cannot
handle uidOrName#null.

ErrNotSupported

Opens a file, using the application defined by uidOrName. uidOrName

can be the application’s UID, or its name (caption). If uidOrName=null,
the standard application for files of this type is used.

Returns the UID of the started application.

Throws ErrNotFound if the application does not exist.

// show an image file in the standard image viewer
uid=app.open("mShell.png");
// kill the app after ten seconds
sleep(10000); app.stop(uid)

m Mobile Shell Library Version 3.00 205

10. Applications and Processes c© 2008 airbit AG

app.runs

• function runs(uidOrName)→ Boolean

Permissions: ReadApp

Checks whether the application defined by uidOrName is running.
uidOrName can be the application’s UID, or its name (caption).

Throws ErrNotFound if the application does not exist.

// check whether the phone application is running
// the caption is in german...
app.runs("Telefon")
→ true

app.send

• function send(uidOrName, msgUid, params)→ null

Permissions: ReadApp+WriteApp

Capabilities: extended

Send a message to the application defined by uidOrName. uidOrName

can be the application’s UID, or its name (caption). msgUid must be
an integer identifying the message type, and params must be a string
whose bytes define the message.

Throws ErrNotFound if the application does not exist or is not running.

This function is completely Symbian OS specific; using it requires ad-
ditional information typically found in the Symbian OS SDKs. See also
app.view (p. 208).

// have the WML browser open a link
// WML browser has UID 0x10008d39 on Series 60
app.send(0x10008d39, 0, "http://wap.248.ch")

app.show

• function show(uidOrName)→ null

Permissions: ReadApp+WriteApp

206 m Mobile Shell Library Version 3.00

http://www.symbian.com
http://www.symbian.com

c© 2008 airbit AG 10.1. Module app: Application Control

Shows the application identified by uidOrName, i.e. brings it to the
foreground. uidOrName can be the application’s UID, or its name
(caption).

Throws ErrNotFound if the application does not exist or is not running.

// make sure the mShell application is shown
app.show(app.uid)

app.start

• function start(uidOrName, background=false)→ null

Permissions: ReadApp+WriteApp

Starts the application identified by uidOrName. uidOrName can be
the application’s UID, or its name (caption). If background=true, the
application is started in the background, otherwise it is brought to the
foreground.

Throws ErrNotFound if the application does not exist.

// start the WML browser in the background
// WML browser has UID 0x10008d39 on Series 60
app.start(0x10008d39, true)

app.stop

• function stop(uidOrName)→ null

Permissions: ReadApp

Stops (ends) the application identified by uidOrName. uidOrName can be
the application’s UID, or its name (caption).

Throws ErrNotFound if the application does not exist.

// stop the WML browser
// WML browser has UID 0x10008d39 on Series 60
app.stop(0x10008d39)

m Mobile Shell Library Version 3.00 207

10. Applications and Processes c© 2008 airbit AG

app.view

• function view(uidOrName, viewUid)→ null

Permissions: ReadApp

• function view(uidOrName, viewUid, commandUid, params)→
null

Permissions: ReadApp+WriteApp

Switches to a view viewUid of the application identified by uidOrName.
uidOrName can be the application’s UID, or its name (caption).

With four parameters, sends the view the command commandUid and
the bytes of the string params.

Throws ErrNotFound if the application does not exist.

This function is completely Symbian OS specific; using it requires addi-
tional information typically found in the Symbian OS SDKs.

function showcontact(id)
// build the parameter block
params=[1]; // EFocusedContactId
// encode the id as four byte integer
for i=1 to 4 do
append(params, id & 0xff); id = id shr 8

end;
app.view(0x101f4cce, // Phonebook application UID

4, // focused view
0x101f4ccf, // command UID
char(params)) // params must be string

end

showcontact(114)

app Constants

• const uid = 0x10204299 | 0xa0002f97 | 0xe7e0cab7 The UID
of the m application.

208 m Mobile Shell Library Version 3.00

http://www.symbian.com
http://www.symbian.com

c© 2008 airbit AG 10.2. Module async: Asynchronous Function Streams

10.2 Module async: Asynchronous Function
Streams

This module provides functions to create and set up streams which turn
an asynchronous function call into a read from a stream: when the
asynchronous function completes, the value it returns can be obtained
from the stream.

By mapping asynchronous function calls into stream reads and waiting
for data being available via io.wait (p. 44), a ‘‘parallel’’ wait for
the completion of multiple asynchronous functions becomes possible,
without resorting to multiple processes and pipes (see module proc

(p. 213)).

The typical steps in setting up asynchronous function streams are:

1. Create the stream(s) via async.new (p. 212).

2. Call the function(s) via async.call (p. 211), passing the function
to be called as a reference.

3. Use io.wait (p. 44) to wait for completion of any of the functions,
or for another stream having data to read.

4. Abort the calls as required via async.abort (p. 211) to free up the
modules for other calls (see ‘‘Restrictions’’ below for details).

5. Depending on the type of stream returned by io.wait, get the
function result via async.result (p. 213), or simply read the
available data.

6. Call the functions which completed or were aborted again via
async.call (p. 211).

Steps 3 to 6 form an event loop.

7. When they are no longer needed, close the streams with io.close

(p. 39). This also aborts any pending calls on the streams.

For instance, a single process can simultaneously wait for an incoming
SMS, the user pressing a key, and a bluetooth connection being made:

m Mobile Shell Library Version 3.00 209

10. Applications and Processes c© 2008 airbit AG

// setup for UI and Bluetooth
ui.keys(false);
service=bt.start("MyService");
// create three streams
s=[async.new(),async.new(),async.new()];
// call the asynchronous functions
async.call(s[0], &sms.receive);
async.call(s[1], &ui.cmd);
async.call(s[2], &bt.accept, service);
while true do
// wait for any of the functions to complete
t=io.wait(s);
// read the function result
v=async.result(t);
case t
in s[0]: // v is an SMS
...
// receive next message
async.call(s[0], &sms.receive)

in s[1]: // v is a keycode
...
// get next keycode
async.call(s[1], &ui.cmd)

in s[2]: // v is a BT connection
...
// wait for next connection
async.call(s[2], &bt.accept, service)

end
end;
// close the streams
for t in s do
io.close(t)

end

Restrictions

There are two important restrictions to observe when using module
module async:

• Only calls to native functions can be turned into stream reads. As

210 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 10.2. Module async: Asynchronous Function Streams

all low level asynchronous functions are implemented natively, this
normally does not pose a problem.

• Native m modules are generally not reentrant, so no new function
call can be made while a call of the same module is still pending.
For instance, you cannot send an SMS via sms.send while an
sms.receive call is still pending. Attempting to call a module with
a pending call throws ExcModuleBusy.

async.abort

• function abort(stream)→ null

Aborts any pending function call on stream; does nothing if there is no
pending call.

async.call

• function call(stream, function, ...)→ null

Calls the function referenced by function, passing the remaining pa-
rameters, and returns immediately. As soon as function returns, a byte
becomes available on stream, and the function result can be gotten
from stream via async.result (p. 213).

Any timeout on function is ignored, whether it is part of the function’s
module, or a parameter of the call. For functions called via async.call,
timeouts must be implemented via io.timeout (p. 44), and the pending
call explicitly aborted via async.abort, if required.

If the call immediately terminates with an exception, the exception will
appear to be thrown by asynccall. If a call terminates with an exception
asynchronously, the exception will be thrown when waiting for or reading
data from the stream.

Throws ExcNotFunction if function is not a function reference. See
also section 2.8 (Reference, p. 36).

Throws ExcNotNative if function is not a reference to a native
function.

Throws ExcModuleBusy if the function’s module already has a pending
call.

m Mobile Shell Library Version 3.00 211

10. Applications and Processes c© 2008 airbit AG

Throws ErrInUse if the stream already has a pending call.

// two functions performing essentially the same
function synchronous()
return phone.state(phone.idle)

end
function asynchronous()
// create a new stream
s=async.new();
// call phone.state(), returning immediately
async.call(s, &phone.state, phone.idle);
// wait for phone.state() to complete
io.read(s, 1);
// get the result of phone.state()
state=async.result(s);
// close the stream
io.close(s);
return state

end

async.new

• function new()→ Native Object

Creates a new asynchronous function stream accepting function calls
and returns it. The returned stream can only be used for asynchronous
function calls. It cannot be written to, and a single byte can be read after
an asynchronous function call completes.

// create an asynchronous function stream
stream=async.new()

async.pending

• function pending(stream)→ Boolean

Returns true if stream has a pending call. Returns false if there is no
pending call.

Use io.avail to determine whether a result is available.

212 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 10.3. Module proc: m Processes

// start a new call if there is none pending,
// and there is no result to be read
if not async.pending(s) and io.avail(s)=0 then
async.call(s, &sms.receive)

end

async.result

• function result(stream)→ anytype

Get the result of the last function called via async.call.

Throws ErrNotReady if there was no call or if it is still pending.

10.3 Module proc: m Processes

This module manages m processes (scripts and executables). It can start
and stop, and show and hide processes. It also supports a simple inter-
process communication (IPC) mechanism via unidirectional named pipes,
and an argument string.

Processes are identified by the name of their script or executable (without
path and extension). Since shell processes do not have an associated
script and thus no name, they cannot be managed from other processes.
For instance, the script c:\documents\mShell\BTScanner.m has an
associated process with name BTScanner. Process names are not case
sensitive.

proc.arg

• function arg()→ String

Get the argument string specified when the process was started via
proc.run (p. 217). For processes started manually from the process list
or via the autostart feature, proc.arg returns the empty string.

// print the command line argument
print proc.arg()
→ hello

m Mobile Shell Library Version 3.00 213

10. Applications and Processes c© 2008 airbit AG

proc.close

• function close(name)→ null

• function close()→ null

With one argument, closes the process with the given name. Without an
argument, closes the process it is called from.

Closing a process also stops it if it is running. If the process is already
closed, or there is no such process, the call is ignored.

// stop and close the BTScanner process
proc.close("BTScanner")

proc.find

• function find(name="*")→ Array

Gets a list of all known scripts or executables in the current document
folder whose name matches name. name is not case sensitive and can
contain the wildcards * (matches any sequence of characters) and ?

(matches any single character).

Throws ErrNotSupported when called from standalone applications.

// start all processes which end on "Test"
for f in proc.find("*Test") do
proc.run(f)

end

proc.hide

• function hide(name)→ null

• function hide()→ null

With one argument, hides the process with the given name. Without an
argument, hides the process it is called from.

In the mShell application, this call simply shows the list of scripts and
modules. In standalone applications, this call hides the application.

If the process is not currently shown, this call does nothing.

214 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 10.3. Module proc: m Processes

Throws ErrNotFound if there is no running process with the given name.

// hide the current process
proc.hide()

proc.pipe

• function pipe(name, create=true, bufsize=256)→ Native
Object

Opens or creates a pipe with name name and returns a stream to read
from and write to the pipe. The pipe can be opened by other processes
using the same name, thus providing a communication channel between
m processes.

If create=false, the function throws ErrNotFound if the pipe does not
already exist.

If created, the pipe will have a buffer of bufsize bytes. The default size is
large enough for efficient inter-process communication (IPC): whenever
there is not enough room in the pipe buffer, a write to the pipe will block
until another process reads from the pipe to free up space.

However, if the same process reads from and writes to the pipe, the
buffer must be large enough to hold all data written between reads. This
is the only case where larger buffer sizes may be needed.

Once created, a pipe stream is accessed via module io (p. 36):

• io.read, io.readln, and io.readm read data,

• io.write, io.writeln, io.writem, io.print, and io.println

write data,

• io.avail gets the number of bytes which can be read without
blocking,

• io.wait waits for data which can be read without blocking,

• io.close closes the stream (but not the pipe). The pipe will be
deleted when all streams referencing it have been closed.

• io.ces gets and sets the character encoding scheme. As with files,
the default is io.raw.

m Mobile Shell Library Version 3.00 215

10. Applications and Processes c© 2008 airbit AG

• io.timeout sets the timeout for read and write operations.

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is written.

With io.readm (p. 42) and io.writem (p. 46) are ideally suited for pipes,
as data is both written and read by m.

Only one process can read from the pipe at a given time. Issuing a read
with another read pending (from another process) will throw ErrInUse.

Up to sixteen processes can write to the pipe at a given time. Issuing a
write when sixteen other writes are pending (from other processes) will
throw ErrNotReady.

Pipes are unidirectional. For bidirectional communication between pro-
cesses, two pipes (with different names) are required.

The first trivial example just shows how to read from and write to a pipe:

// create a pipe stream and write to it
s=proc.pipe("SamplePipe");
io.writeln(s, "Hello world!");
// read from the pipe what was written into it
print io.readln(s)
→ Hello world!
// close the stream; this will also delete the pipe
io.close(s)

A more realistic example consists of two processes with two pipes. The
first process in script Reverser reads a line from pipe ReverserIn, and
writes the reversed line to pipe ReverserOut:

216 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 10.3. Module proc: m Processes

function reverse(s)
c=code(s);
i=0; j=len(c)-1;
while i<j do
h=c[i]; c[i]=c[j]; c[j]=h; i++; j--

end;
return char(c)

end

// create (or open) the two pipes
rin=proc.pipe("ReverserIn");
rout=proc.pipe("ReverserOut");
// loop forever reading, reversing and writing
while true do
io.writeln(rout, reverse(io.readln(rin)))

end

We now can use the reverser process:

// make sure the reverser runs
proc.run("Reverser");
rin=proc.pipe("ReverserIn");
rout=proc.pipe("ReverserOut");
io.writeln(rin,"Hello world!");
print io.readln(rout)
→ !dlrow olleH

proc.run

• function run(name, arg="")→ null

Runs (starts) the process with the given name, and the argument string
arg. If a process with this name is already running, the call is ignored.

name is always relative to the ‘‘document’’ directory of the current
process (system.docdir (p. 50)). If there is an executable (.mex file)
with the given name, it will be loaded. Otherwise, the script (.m file) will
be loaded.

The argument string is accessed via proc.arg (p. 213) from the target
process.

Throws ErrNotFound if there is no executable or script with the given

m Mobile Shell Library Version 3.00 217

10. Applications and Processes c© 2008 airbit AG

name.

// start the BTScanner process, passing "hello" to it
proc.run("BTScanner", "hello")

proc.runs

• function runs(name)→ Boolean

Returns true if the process with the given name is running, and false if
it is stopped, or there is no such process.

Throws ErrNotFound if there is no executable or script with the given
name.

// stop the BTScanner process
proc.stop("BTScanner");
// it should not be running now
proc.runs("BTScanner")
→ false

proc.show

• function show(name)→ null

• function show()→ null

With one argument, shows the process with the given name. Without an
argument, shows the process it is called from.

Showing a process shows its console, or any other view it is displaying.
If the process is already shown, the call is ignored.

Throws ErrNotFound if there is no running process with the given name.

// show the current process
proc.show()

218 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 10.3. Module proc: m Processes

proc.stop

• function stop(name)→ null

• function stop()→ null

With one argument, stops the process with the given name. Without an
argument, stops the process it is called from, i.e. terminates it.

If the process is not running, the call is ignored.

// stop the current process
proc.stop()

m Mobile Shell Library Version 3.00 219

10. Applications and Processes c© 2008 airbit AG

220 m Mobile Shell Library Version 3.00

c© 2008 airbit AG

11. Environment

11.1 Module accel: Accelerator Measure-
ments

Compatibility of module accel

Sony Ericsson phones and Nokia S60
2nd Edition phones lack this mod-
ule.

Module not found

Selected Nokia S60 3rd Edition
phones devices with builtin accel-
eration sensor.

ok

This module returns the measurements of the builtin acceleration sensor.
Please note that only a few devices have a such a sensor.

Each measurement corresponds to a vector in three dimensional space.
Unfortunately the meaning of the values returned varies between devices,
in particular the sign of the z component.

On the N95-8GB, we found the following:

Key Meaning Type
x Parallel to the screen, negative to the left, positive to

the right.
Number

y Parallel to the screen, negative to the bottom, posi-
tive to the top.

Number

z Orthogonal to the screen, negative away from the
viewer, positive towards the viewer.

Number

m Mobile Shell Library Version 3.00 221

11. Environment c© 2008 airbit AG

Vector directions on
the N95-8GB

If the device is still, the acceleration corresponds to the gravitation and
thus allows to determine the rotation of the device. For instance, if the
device lies flat on a table with the screen facing up, the z component will
have a large value (gravitation pulling ‘‘down’’). If the device is flipped
over, the z component will change its sign.

The maximum magnitude of the measurements seems to be about 370
for gravitation only. Some devices return higher values for short time
acceleration, e.g. when tapping on the device.

accel.get

• function get()→ Array

Gets the current acceleration vector.

// Check whether the N95-8GB is face up or down
function isFaceUp()
return accel.get()["z"]<0

end
print isFaceUp()
→ true

222 m Mobile Shell Library Version 3.00

c© 2008 airbit AG 11.1. Module accel: Accelerator Measurements

accel.new

• function new(mindelta=20,timeout=-1)→ Array|null

Waits until any component of the acceleration vector changes by at least
mindelta, then return the current vector. If timeout>=0 and timeout

milliseconds have passed without any change, null is returned.

The following example draws a blue line in perpendicular direction:

// compute the center and radius
s=graph.size();
cx=s[0]/2; cy=s[1]/2; r=cx;
if cy<r then r=cy end;
// compute the scale factor
f=-r/300;
// initially there is no line
dx=0; dy=0;
do
graph.show();
a=accel.new(10);
// erase the old line
graph.pen(graph.bg());
graph.line(cx, cy, cx+dx, cy+dy);
// compute the new line
dx=f*a["y"]; dy=f*a["x"];
// draw the new line
graph.pen(graph.blue);
graph.line(cx, cy, cx+dx, cy+dy)
// until the device is flipped

until a["z"]>200

m Mobile Shell Library Version 3.00 223

11. Environment c© 2008 airbit AG

224 m Mobile Shell Library Version 3.00

c© 2008 airbit AG Index

Index
abort function (in async), 211

abs function (in bigint), 99

abs function (in math), 104

accel module, 221

acceleration sensor, 221

accept function (in bt), 129

accept function (in net), 142

acos function (in math), 104

active constant (in phone), 202

add function (in agenda), 113

add function (in bigint), 100

add function (in contacts), 118

adr function (in bt), 130

adr function (in net), 142

adr, bluetooth device field, 133

adr, contact field, 117

adr, local net address member field,
149

adr, remote net address member field,
150

agenda, 109

database, 109

entry types, 109

fields, 109

agenda module, 109

alarm, agenda field, 110

alaw constant (in audio), 176

all constant (in agenda), 111

all constant (in files), 28

alpha blending, 59

alpha function (in graph), 61

amr constant (in audio), 176

AMR-NB format, 173, 176

anniv constant (in agenda), 110

answer function (in phone), 199

app module, 203

appdir constant (in system), 49

append function (builtin), 7

append function (in io), 38

application control, 203

appt constant (in agenda), 110

arch constant (in files), 28

arg function (in proc), 213

argument string, 213

array module, 20

asin function (in math), 104

async module, 209

asynchronous functions, 209

atan function (in math), 104

attmt constant (in msg), 163

attr function (in files), 28

attribute bits, 28

au constant (in audio), 176

AU format, 173, 176

audio file, 173

audio module, 173

audio, video member field, 190

authenticate constant (in bt), 134

m Mobile Shell Library Version 3.00 225

Index c© 2008 airbit AG

authorise constant (in bt), 134

auto flushing, 40, 128, 138, 142, 216

avail function (in io), 38

availability, 3

background, 204

background blending, 61

background color, 59, 61

base, agenda field, 110

base, path parse member field, 32

beep function (in audio), 173

bg function (in graph), 61

bigint module, 99

birth, contact field, 117

black constant (in graph), 59

blue constant (in graph), 59

Bluetooth, 34, 125

bluetooth

address, 125

channel, 127

device class, 126

device name, 126

device selection, 133

RFCOMM, 127

SDP, 126

starting service, 133

timeout, 134

UUID, 126, 135

visibility, 136

Bluetooth Serial Port, 137

BMP, 71

BOM, 37

bom constant (in io), 37

bps, serial configuration field, 138

bright function (in cam), 183

brush color, 59, 62

brush function (in graph), 62

bt module, 125

Builtin Functions and Constants, 7

busy function (in audio), 174

busy function (in ui), 82

busy function (in video), 189

buttons, pointer event field, 83

Byte Order Mark, 37

calendar, 109

call function (in async), 211

cam module, 181

capabilities, 50

caps constant (in system), 50

cd function (builtin), 7

cdma2000 constant (in net), 146

ceil function (in math), 105

cell, contact field, 117

cert function (in net), 143

certificate, 143

CES, 37

ces function (in io), 39

chan function (in bt), 130

char function (builtin), 8

character encoding scheme, 37

character set, 158

Check box, 86

cid function (in gsm), 195

circle function (in graph), 62

class

226 m Mobile Shell Library Version 3.00

c© 2008 airbit AG Index

instance, 13

class, bluetooth device field, 133

clear function (in graph), 63

clip function (in graph), 63

clipping rectangle, 63

close function (in audio), 174

close function (in io), 39

close function (in obex), 164

close function (in proc), 214

close function (in video), 190

close function (in zip), 54

cls function (builtin), 8

cmd function (in ui), 83

cmp function (in bigint), 100

code function (builtin), 8

codec, 176

collate constant (in array), 27

collate function (builtin), 9

Combo box, 86

comm module, 137

company, contact field, 117

concat function (in array), 20

config function (in comm), 138

confirm function (in ui), 84

conn function (in bt), 131

conn function (in net), 144

conn function (in obex), 165

console, 96

console input, 38

console mode, 57, 68

contact

database, 116

fields, 116

contacts, 116

contacts module, 116

contrast function (in cam), 183

copy function (in array), 20

copy function (in files), 29

cos function (in math), 105

count constant (in cam), 188

country, contact field, 117

crc, ZIP member field, 56

create function (in array), 21

create function (in io), 39

csd constant (in net), 146

csize, ZIP member field, 56

cts constant (in comm), 140

current directory, 4

cut function (in audio), 175

cyan constant (in graph), 59

daily constant (in agenda), 111

data, serial configuration field, 138

date function (builtin), 9

dayofweek function (in time), 50

dcd constant (in comm), 140

delete function (builtin), 10

delete function (in agenda), 113

delete function (in contacts), 119

delete function (in files), 29

delete function (in mms), 154

delete function (in msg), 160

delete function (in sms), 168

descr, message entry field, 163

descr2, message entry field, 163

m Mobile Shell Library Version 3.00 227

Index c© 2008 airbit AG

dev constant (in system), 50

dial function (in phone), 199

dialog, 86

dialogs, 82

dir constant (in files), 28

dir, path parse member field, 32

div function (in bigint), 100

docdir constant (in system), 50

done constant (in agenda), 110

done, agenda field, 110

down constant (in graph), 81

downkey constant (in ui), 97

downkey2 constant (in ui), 97

draft constant (in msg), 163

drive, path parse member field, 32

dsr constant (in comm), 140

dst, video view settings member field,
193

dtmf function (in audio), 175

dtr constant (in comm), 140

e constant (in math), 108

e-mail, 34

edit function (in files), 30

ellipse function (in graph), 64

email, contact field, 117

encrypt constant (in bt), 134

end, agenda field, 110

end, agenda repeat field, 111

end, certificate field, 143

equal function (builtin), 9

ErrAccessDenied, 39, 40, 175, 177

ErrArgument, 17, 46, 52, 102, 104,

106, 107, 120--122, 136,
175, 178

ErrBadHandle, 149, 150

ErrBadName, 118, 122

ErrCertificateUnknown, 144

ErrCorrupt, 43, 55

ErrDisconnected, 199--201

ErrDivideByZero, 100, 101

ErrEof, 43

ErrInUse, 173--175, 177--180, 183,
185--187, 190, 191, 199,
212, 216

ErrNotFound, 40, 55, 113, 115, 119,
121, 123, 139, 141, 154,
155, 158, 160, 168, 169,
176, 204--208, 215, 217,
218

ErrNotReady, 176, 178, 179, 183, 186,
187, 191, 192, 213, 216

ErrNotSupported, 48, 77, 136, 153,
157, 175, 176, 180, 187,
195, 214

error function (in ui), 85

ErrOverflow, 106

ErrPathNotFound, 38--40

ErrTimedOut, 44, 135, 152, 167

event constant (in agenda), 110

ExcIndexOutOfRange, 20--23, 25, 26,
139, 184, 185

ExcInterrupted, 91

ExcInvalidNumber, 96

ExcInvalidParam, 118

ExcInvalidUTF8, 37

ExcModuleBusy, 211

ExcNoSuchClass, 43

228 m Mobile Shell Library Version 3.00

c© 2008 airbit AG Index

ExcNoSuchKey, 25

ExcNotComparable, 23, 26

ExcNotFunction, 211

ExcNotNative, 211

ExcStringPosOutOfRange, 10, 11, 16,
19

ExcUnknownField, 43

ExcValueOutOfRange, 17, 44, 84, 93,
98, 110, 120, 135, 139,
152, 157, 167, 170, 174,
186, 197, 199, 201

exists function (in files), 30

exp function (in math), 105

ext, path parse member field, 32

extadr, contact field, 117

extname, contact field, 117

extract function (in zip), 55

fax, contact field, 117

file

attribute, 28, 34

name, 4

file, application field, 204

files module, 27

files, MMS field, 155

fill function (in array), 21

find function (in agenda), 114

find function (in app), 203

find function (in contacts), 119

find function (in proc), 214

findall function (in agenda), 115

findnr function (in contacts), 120

flags, agenda field, 110

floor function (in math), 105

flush function (in io), 40

fname, contact field, 117

fold constant (in array), 27

folder constant (in msg), 163

font, 66, 85

font function (in graph), 66

fonts function (in ui), 85

foreground, 207

form function (in ui), 86

fps, video member field, 190

full function (in graph), 66

full screen mode, 57, 66, 69

function

reference, 12

garbage collection, 48, 49

gc function (in system), 48

get function (in accel), 222

get function (in agenda), 115

get function (in contacts), 121

get function (in graph), 70

get function (in mms), 154

get function (in obex), 165

get function (in sms), 169

get function (in time), 51

GIF, 71

GIF format, 77

gokey constant (in ui), 97

GPRS, 142

graph module, 57

graphics, 57

blending, 59

colors, 58

m Mobile Shell Library Version 3.00 229

Index c© 2008 airbit AG

coordinates, 57

gravitation, 222

green constant (in graph), 59

gsm module, 195

hal function (in system), 48

hangup function (in phone), 200

hexnum function (builtin), 10

hexstr function (builtin), 11

hidden constant (in files), 28

hide function (in app), 204

hide function (in graph), 71

hide function (in proc), 214

hide function (in video), 190

host name, 142

IAP, 142, 145

iap function (in net), 145

iaps function (in net), 146

icon function (in graph), 71

id, IAP member field, 146

id, message entry field, 163

idle constant (in phone), 202

idletime function (in ui), 88

ima constant (in audio), 177

imei constant (in gsm), 197

imsi constant (in gsm), 197

inactivity timer, 88

inbox constant (in msg), 163

inbox function (in mms), 155

inbox function (in sms), 169

incoming, call field, 201

index function (builtin), 11

index function (in array), 22

index function (in cam), 184

Infrared, 137

insert function (in array), 22

instance

function reference, 13

inter-process communication, 213,
215

Internet, 141

Internet Access Point, 142, 145

interval, agenda repeat field, 111

io module, 36

IPC, 213, 215

IrDA, 137

isarray function (builtin), 12

isboolean function (builtin), 12

isfunction function (builtin), 12

isinst function (builtin), 13

isinstfunc function (builtin), 13

isnative function (builtin), 13

isnum function (builtin), 14

isort function (in array), 23

isstr function (builtin), 14

issuer, certificate field, 143

JPEG, 71

JPEG format, 77

key function (in app), 204

keyboard, 83, 88

keys function (builtin), 14

keys function (in ui), 88

keystroke, 83, 88

230 m Mobile Shell Library Version 3.00

c© 2008 airbit AG Index

labels function (in contacts), 121

lac, GSM network field, 196

lan constant (in net), 146

large function (in ui), 89

Large integers, 99

leftkey constant (in ui), 97

leindex function (in array), 24

len function (builtin), 15

len function (in audio), 176

len, video member field, 190

line function (in graph), 72

link function (in comm), 139

list function (in ui), 90

listen function (in net), 147

loc, agenda field, 110

loc, contact field, 117

local constant (in msg), 163

local function (in net), 149

log function (in math), 106

long, GSM network field, 196

lower function (builtin), 15

m

process, 213

magenta constant (in graph), 59

math module, 104

mcc, GSM network field, 196

md5, certificate field, 143

mdir constant (in system), 50

mem function (in system), 48

menu command, 83

menu function (in ui), 91

menus, 82

Messages, 159

mfont function (in ui), 92

MIB enum, 158

mkdir function (in files), 31

MMS, 34, 159

mms module, 153

mnc, GSM network field, 196

mod function (in bigint), 101

mode function (in ui), 93

monthlydate constant (in agenda), 112

monthlyday constant (in agenda), 112

move function (in files), 31

move function (in msg), 160

MP3, 173

MP4, 189

ms function (in phone), 200

msg constant (in msg), 163

msg function (in ui), 93

msg module, 159

mul function (in bigint), 101

mulaw constant (in audio), 176

name function (in bt), 132

name function (in net), 149

name, application field, 204

name, bluetooth device field, 133

name, contact field, 117

name, IAP member field, 146

name, ZIP member field, 56

named pipes, 213

native object, 13

neg function (in bigint), 101

net function (in gsm), 196

m Mobile Shell Library Version 3.00 231

Index c© 2008 airbit AG

net module, 141

new function (in accel), 223

new function (in array), 24

new function (in async), 212

new function (in bigint), 102

new function (in contacts), 122

new function (in gsm), 196

new function (in phone), 200

note, contact field, 117

num function (builtin), 15

num function (in bigint), 102

num function (in time), 51

number

formatting, 11, 18

number constant (in gsm), 198

number editor, 86, 96

number, call field, 201

OBEX, 159

obex

timeout, 166

obex module, 164

object exchange, 164

off function (in cam), 185

off function (in vibra), 98

OID numbers, 143

on function (in cam), 185

on function (in vibra), 98

open function (in app), 205

open function (in audio), 176

open function (in comm), 139

open function (in io), 40

open function (in mms), 155

open function (in msg), 160

open function (in video), 190

open function (in zip), 55

orientation, 93

origin, 63

os constant (in system), 50

outbox constant (in msg), 163

own contact, 123

own function (in contacts), 123

pager, contact field, 117

parity, serial configuration field, 138

parse function (in files), 32

password editor, 86

path

name, 4

path function (in obex), 165

pcm16 constant (in audio), 176

pcm8 constant (in audio), 176

pen, 95

pen color, 59, 73

pen function (in graph), 73

pending function (in async), 212

pfonts function (in ui), 94

phone calls, 198

phone module, 198

phone, contact field, 117

pi constant (in math), 108

pict, contact field, 117

pipe function (in proc), 215

platform constant (in system), 50

play function (in audio), 178

play function (in video), 191

232 m Mobile Shell Library Version 3.00

c© 2008 airbit AG Index

PNG, 71

PNG format, 77

po, contact field, 117

pointer, 83

pointing device, 83, 95

poly function (in graph), 74

port, local net address member field,
149

port, remote net address member field,
150

pos function (in audio), 179

pos function (in video), 191

pow function (in bigint), 103

pow function (in math), 106

print function (in io), 41

println function (in io), 41

prio, agenda field, 110

proc module, 213

processes, 213

ptr function (in ui), 95

put function (in graph), 74

put function (in obex), 166

query function (in ui), 96

random function (in math), 106

raw constant (in array), 27

raw constant (in io), 37

read function (in io), 41

readln function (in io), 42

readm function (in io), 42

receive function (in mms), 156

receive function (in sms), 170

record function (in audio), 179

recording, 173

rect function (in graph), 76

red constant (in graph), 59

region, contact field, 117

remind constant (in agenda), 110

remote function (in net), 150

remove function (in array), 25

rename function (in files), 32

rep constant (in agenda), 110

rep, agenda field, 110

replace function (builtin), 16

result function (in async), 213

RFCOMM, 127

RGB, 58

rightkey constant (in ui), 97

rindex function (builtin), 16

rindex function (in array), 26

ring, contact field, 117

ringing constant (in phone), 202

rmdir function (in files), 33

ro constant (in files), 28

root constant (in msg), 163

roots function (in files), 33

rot, video view settings member field,
193

round function (in math), 107

rts constant (in comm), 140

run function (in proc), 217

runs function (in app), 206

runs function (in proc), 218

rw constant (in audio), 176

save function (in graph), 77

m Mobile Shell Library Version 3.00 233

Index c© 2008 airbit AG

save function (in ui), 96

scale function (in graph), 77

scan function (in bt), 132

scan function (in files), 33

scan function (in msg), 162

scan function (in zip), 55

screen function (in graph), 78

screen mode, 93

SDP, 126

secret constant (in ui), 97

Secure connection, 144

Secure Sockets Layer, 144

seek function (in io), 43

select function (in bt), 133

Send as, 34

send as, 27

send function (in app), 206

send function (in files), 34

send function (in mms), 157

send function (in sms), 170

sender, MMS field, 155

sender, SMS field, 169

sent constant (in msg), 163

serial port, 137

serial, certificate field, 143

server certificate, 143

set function (in agenda), 116

set function (in contacts), 124

set function (in mms), 159

set function (in sms), 171

set function (in time), 51

short, GSM network field, 196

show function (in app), 206

show function (in graph), 78

show function (in proc), 218

show function (in video), 192

shut function (in net), 150

signal function (in comm), 140

signal function (in gsm), 197

sin function (in math), 107

size function (in files), 35

size function (in graph), 79

size function (in io), 44

size, video member field, 190

size, ZIP member field, 56

sizes function (in cam), 185

sleep function (builtin), 16

SMS, 159

sms module, 167

sort function (in array), 26

split function (builtin), 17

sqrt function (in math), 107

src, video view settings member field,
193

SSL, 141, 144

ssl constant (in net), 144

start function (in app), 207

start function (in bt), 133

start function (in net), 151

start, agenda field, 110

start, certificate field, 143

state function (in phone), 201

stdin constant (in io), 37

stdout constant (in io), 37

stop function (in app), 207

234 m Mobile Shell Library Version 3.00

c© 2008 airbit AG Index

stop function (in audio), 180

stop function (in bt), 134

stop function (in net), 151

stop function (in proc), 219

stop function (in video), 192

stop, serial configuration field, 138

str function (builtin), 17

str function (in bigint), 103

str function (in time), 52

stream object, 36, 54, 139

sub function (in bigint), 103

subject, certificate field, 143

subject, MMS field, 155

substr function (builtin), 18

sys constant (in files), 28

system module, 47

take function (in cam), 186

tan function (in math), 107

TCP, 141

TCP/IP

timeout, 151

TCP/IP networking, 141

terms, serial configuration field, 138

text editor, 86, 96

text function (in graph), 81

text, agenda field, 110

text, contact field, 117

text, SMS field, 169

time function (in files), 35

time module, 50

time, message entry field, 163

time, MMS field, 155

time, SMS field, 169

timeout function (in bt), 134

timeout function (in io), 44

timeout function (in net), 151

timeout function (in obex), 166

title, contact field, 117

TLS, 141, 144

tls constant (in net), 144

to-do list, 109

todo constant (in agenda), 110

Transport Layer Security, 144

trim function (builtin), 19

trunc function (in math), 107

type, agenda repeat field, 111

type, message entry field, 163

type, video member field, 190

ui module, 82

uid constant (in app), 208

uid, application field, 204

UMTS, 142

units function (in comm), 141

unread, message entry field, 163

unread, MMS field, 155

unread, SMS field, 169

up constant (in graph), 81

upkey constant (in ui), 97

upkey2 constant (in ui), 97

upper function (builtin), 19

url, contact field, 117

USB Serial Port, 137

use, 3

user activity, 88

m Mobile Shell Library Version 3.00 235

Index c© 2008 airbit AG

utc function (in time), 53

utf16be constant (in io), 37

utf16le constant (in io), 37

utf8 constant (in io), 37

UUID, 126

uuid constant (in obex), 167

uuid function (in bt), 135

verbosegc function (in system), 49

version constant (builtin), 19

version, certificate field, 143

vibra module, 97

vibration control, 97

video module, 188

video, contact field, 117

view function (in app), 208

view function (in cam), 187

view function (in video), 193

virtual constant (in net), 146

visible function (in bt), 136

volume function (in audio), 180

volume function (in video), 192

wait function (in audio), 181

wait function (in io), 44

wait function (in video), 194

wav constant (in audio), 176

WAV format, 173, 176

wcdma constant (in net), 146

weekly constant (in agenda), 111

weekofyear function (in time), 53

when, agenda repeat field, 111

white constant (in graph), 59

who function (in obex), 167

WLAN, 142

write function (in io), 45

writeln function (in io), 45

writem function (in io), 46

x, acceleration vector component, 221

x, pointer event field, 83

X.509, 143

y, acceleration vector component, 221

y, pointer event field, 83

yearlydate constant (in agenda), 112

yearlyday constant (in agenda), 112

yellow constant (in graph), 59

z, acceleration vector component, 221

ZIP archives, 54

zip module, 54

zip, contact field, 117

236 m Mobile Shell Library Version 3.00

	Introduction
	Module and Function Availability
	Path and File Names

	Fundamental Modules
	Builtin Functions and Constants
	.append
	.cd
	.char
	.cls
	.code
	.collate
	.date
	.equal
	.delete
	.hexnum
	.hexstr
	.index
	.isarray
	.isboolean
	.isfunction
	.isinst
	.isinstfunc
	.isnative
	.isnum
	.isstr
	.keys
	.len
	.lower
	.num
	.replace
	.rindex
	.sleep
	.split
	.str
	.substr
	.trim
	.upper
	Constants

	Module array: Array Functions
	array.concat
	array.copy
	array.create
	array.fill
	array.index
	array.insert
	array.isort
	array.leindex
	array.new
	array.remove
	array.rindex
	array.sort
	Constants

	Module files: File and Directory Access
	files.attr
	files.copy
	files.delete
	files.edit
	files.exists
	files.mkdir
	files.move
	files.parse
	files.rename
	files.rmdir
	files.roots
	files.scan
	files.send
	files.size
	files.time

	Module io: File and Stream Input/Output
	io.append
	io.avail
	io.close
	io.ces
	io.create
	io.flush
	io.open
	io.print
	io.println
	io.read
	io.readln
	io.readm
	io.seek
	io.size
	io.timeout
	io.wait
	io.write
	io.writeln
	io.writem

	Module system: System Related Functions
	system.gc
	system.hal
	system.mem
	system.verbosegc
	Constants

	Module time: Time and Date Functions
	time.dayofweek
	time.get
	time.set
	time.num
	time.str
	time.utc
	time.weekofyear

	Module zip: ZIP Archives
	zip.close
	zip.extract
	zip.open
	zip.scan

	User Interface
	Module graph: Screen Graphics
	graph.alpha
	graph.bg
	graph.brush
	graph.circle
	graph.clear
	graph.clip
	graph.ellipse
	graph.font
	graph.full
	graph.get
	graph.hide
	graph.icon
	graph.line
	graph.pen
	graph.poly
	graph.put
	graph.rect
	graph.save
	graph.scale
	graph.screen
	graph.show
	graph.size
	graph.text

	Module ui: User Interface Functions
	ui.busy
	ui.cmd
	ui.confirm
	ui.error
	ui.fonts
	ui.form
	ui.idletime
	ui.keys
	ui.large
	ui.list
	ui.menu
	ui.mfont
	ui.mode
	ui.msg
	ui.pfonts
	ui.ptr
	ui.query
	ui.save
	Constants

	Module vibra: Vibration Control
	vibra.off
	vibra.on

	Mathematics
	Module bigint: Arbitrarily Large Integers
	bigint.abs
	bigint.add
	bigint.cmp
	bigint.div
	bigint.mod
	bigint.mul
	bigint.neg
	bigint.new
	bigint.num
	bigint.pow
	bigint.str
	bigint.sub

	Module math: Mathematical Functions
	math.abs
	math.acos
	math.asin
	math.atan
	math.ceil
	math.cos
	math.exp
	math.floor
	math.log
	math.pow
	math.random
	math.round
	math.sin
	math.sqrt
	math.tan
	math.trunc
	Constants

	Personal Data
	Module agenda: Agenda Database
	agenda.add
	agenda.delete
	agenda.find
	agenda.findall
	agenda.get
	agenda.set

	Module contacts: Contacts Database
	contacts.add
	contacts.delete
	contacts.find
	contacts.findnr
	contacts.get
	contacts.labels
	contacts.new
	contacts.own
	contacts.set

	Communications
	Module bt: Bluetooth Communication
	bt.accept
	bt.adr
	bt.chan
	bt.conn
	bt.name
	bt.scan
	bt.select
	bt.start
	bt.stop
	bt.timeout
	bt.uuid
	bt.visible

	Module comm: Serial Communications
	comm.config
	comm.link
	comm.open
	comm.signal
	comm.units

	Module net: TCP/IP Networking
	net.accept
	net.adr
	net.cert
	net.conn
	net.iap
	net.iaps
	net.listen
	net.local
	net.name
	net.remote
	net.shut
	net.start
	net.stop
	net.timeout

	Messaging
	Module mms: Multimedia Messages
	mms.delete
	mms.get
	mms.inbox
	mms.open
	mms.receive
	mms.send
	mms.set

	Module msg: Generic Message Access
	msg.delete
	msg.move
	msg.open
	msg.scan
	Constants

	Module obex: Object Exchange Client
	obex.close
	obex.conn
	obex.get
	obex.path
	obex.put
	obex.timeout
	obex.who
	Constants

	Module sms: Short Messages
	sms.delete
	sms.get
	sms.inbox
	sms.receive
	sms.send
	sms.set

	Multimedia
	Module audio: Audio Functions
	audio.beep
	audio.busy
	audio.close
	audio.cut
	audio.dtmf
	audio.len
	audio.open
	audio.play
	audio.pos
	audio.record
	audio.stop
	audio.volume
	audio.wait

	Module cam: Onboard Camera
	cam.bright
	cam.contrast
	cam.index
	cam.off
	cam.on
	cam.sizes
	cam.take
	cam.view
	Constants

	Module video: Playing Videos
	video.busy
	video.close
	video.hide
	video.open
	video.play
	video.pos
	video.show
	video.stop
	video.volume
	video.view
	video.wait

	Telephony
	Module gsm: GSM information
	gsm.cid
	gsm.net
	gsm.new
	gsm.signal
	Constants

	Module phone: Phone Calls
	phone.answer
	phone.dial
	phone.hangup
	phone.ms
	phone.new
	phone.state
	Constants

	Applications and Processes
	Module app: Application Control
	app.find
	app.hide
	app.key
	app.open
	app.runs
	app.send
	app.show
	app.start
	app.stop
	app.view
	Constants

	Module async: Asynchronous Function Streams
	async.abort
	async.call
	async.new
	async.pending
	async.result

	Module proc: m Processes
	proc.arg
	proc.close
	proc.find
	proc.hide
	proc.pipe
	proc.run
	proc.runs
	proc.show
	proc.stop

	Environment
	Module accel: Accelerator Measurements
	accel.get
	accel.new

	Index

