
Reference
Version 3.00

airbit

m Mobile Shell, Reference, Version 3.00
Written by Lukas Knecht

www.m-shell.net

Document AB-M-REF-741

c© 2004-2008 airbit AG, 8008 Zürich, Switzerland

The information contained herein is the property of airbit AG and shall neither be
reproduced in whole or in part without prior written approval from airbit AG. All rights
are reserved, whether the whole or part of the material is concerned, specifically those of
translation, reprinting, reuse of illustration, broadcasting, reproduction by photocopying
machine or similar means and storage in data banks. airbit AG reserves the right to make
changes, without notice, to the contents contained herein and shall not be responsible for
any damages (including consequential) caused by reliance on the material as presented.

Typeset in Switzerland.

c© 2008 airbit AG Contents

Contents

1 Introduction 3

2 Language 5

2.1 Data Types . 5

2.2 Comments . 7

2.3 Literals . 7

2.4 Variables . 10

2.5 Arrays . 11

2.6 Expressions . 14

2.7 Statements . 20

2.7.1 Assignments . 21

2.7.2 Increment . 23

2.7.3 If Statement . 23

2.7.4 While Statement 24

2.7.5 Do-Until Statement 25

2.7.6 For Statement . 25

2.7.7 Case Statement 28

2.7.8 Break Statement 29

2.7.9 Return Statement 30

2.7.10 print Statement 30

2.8 Functions . 32

2.9 Modules . 37

2.10 Exceptions . 41

2.11 Object Oriented Programming 43

2.12 Source Structure . 53

m Mobile Shell Reference Version 3.00 1

Contents c© 2008 airbit AG

3 Interactive Shells 55

3.1 Simplified Syntax for Interactive Use 55

3.2 Shell Builtin Functions . 56

4 Producing Standalone Applications 61

4.1 Input Files . 61

4.2 Settings . 63

5 SMS Control 65

6 m and Symbian Platform Security 67

6.1 Capabilities . 67

6.2 Open Signing Online . 68

6.3 Open Signing with a DevCert 69

6.3.1 Obtaining a DevCert 70

6.3.2 Signing m with the DevCert 71

A Appendix 73

A.1 Exception Tags . 73

A.2 Reserved words . 78

A.3 Properties (.prp) File . 78

A.4 User Permissions . 82

Index 83

2 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG

1. Introduction
m is a simple and easy to learn programming language intended for
mobile phones (‘‘Smart Phones’’). m has been specifically designed for
the limited text editing capabilities of these devices. The language thus
has few special characters, and the library functions generally use short
identifiers.

To obtain a flat learning curve, in particular for the novice user, and
to keep editing m code manageable on a cell phone, the m language
has been kept simple, while still providing a rich set of programming
constructs and functions.

Likewise, the library of modules closely reflects the capabilities of smart
phones. Modules have been designed with ease of use in mind, without
requiring complex setup operations or even an understanding of the
underlying architecture. The module library is described in the ‘‘Library’’
manual, which complements this reference manual.

To protect the phone’s data, the user’s purse, and the phone’s in-
tegrity from malevolent scripts, permissions to use potentially dangerous
functions are configurable.

m Mobile Shell Reference Version 3.00 3

1. Introduction c© 2008 airbit AG

4 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG

2. Language

This chapter defines the m programming language. m is a procedural
language supporting code reuse through a simple concept of modules.

The following sections introduce the building blocks of m. After each
section, the m syntax is summarized by a formal definition in EBNF
(Extended Backus Naur Form):

• Text in single quotes ” corresponds to the actual text (terminal
symbols).

• Text in bold face denotes keywords (reserved words).

• The vertical bar | separates alternatives.

• Text in brackets [] is optional.

• Text in curly braces {} can be repeated (zero times, once or many
times).

• Text in parentheses () is grouped together.

m scripts are read as a series of tokens which are separated by ‘‘separator’’
characters (all characters which are not letters, digits or an underscore).
White space (blank and new line) always separates two characters. The
amount of white space used does not affect the meaning of a script, but
white space should be added sensibly to make a script more readable by
indenting lines to reflect the structure of the code.

2.1 Data Types

m supports the following data types:

m Mobile Shell Reference Version 3.00 5

http://en.wikipedia.org/wiki/Extended_Backus-Naur_form

2. Language c© 2008 airbit AG

• Number: numbers have a range of roughly −10308 to 10308 and
have a precision of almost 17 decimal digits1.

• String: strings are sequences of characters2. Strings are immutable:
their length is fixed, and individual characters cannot be changed.
However, there are many builtin functions (see builtin functions
(Library, p. 7)) manipulating strings.

• Boolean: booleans are logical values, i.e. either true or false. For
instance, the result of a comparison is of Boolean type. Booleans
are also often used as flags or to denote options for functions.

• Array: arrays are collections of arbitrarily many values. Multidi-
mensional arrays (e.g. matrices) are constructed as arrays of arrays.
In m, arrays are dynamic in size. Elements can be appended
or removed. Elements can be indexed by numbers or strings
(‘‘associative array’’). See also section 2.5 (p. 11).

• Class Instance: an instance of a class (an object). Class instances are
at the center of object oriented programming (OOP) in m. Chapter
2.11 (p. 43) explains m’s OOP features.

• Null: this special type denotes an uninitialized or unspecified value.
The only value of this type is null.

• Function Reference: a reference (‘‘pointer’’) to a function. The
reference can be used to specify callback functions, or to implement
a simple polymorphism scheme.

• Instance Function Reference: a reference to a function of a class
instance. The reference can be used to specify callback functions
operating directly on class instances.

• Native Objects: are created by modules which are tied closely into
the underlying operating system, e.g. by module io (Library, p. 36).
Native objects can only be assigned and compared for identity.

1Internally, numbers are stored as 64 bit floating point values in IEEE format, with 52+1
bit mantissa and 11 bit exponent.

2Internally, each character is represented by 16 bits, thus supporting the UNICODE R©

basic multilingual plane. However, fonts often support only the ISO-8859-1 (Latin) character
set.

6 m Mobile Shell Reference Version 3.00

http://www.unicode.org

c© 2008 airbit AG 2.2. Comments

2.2 Comments

Normally, all characters in an m script are assumed to be m language.
Comments intended for the human reader must therefore be specially
marked:

• Single line comments start with a double slash: any text from a //

to the end of the line containing it is considered a comment.

• Multiline comments start with slash-star and end with star-slash:
any text between /* and */ is considered a comment and ignored.
These comments can be nested.

print 3*3 // this prints nine
→ 9
/* The following m code is within this comment,

so it is ignored:
print 5/7

This is still part of the comment.
/* This is a nested comment ending here: */
This is the last line of this comment. */

print 3/4
→ 0.75

Comment marks cannot be placed within string literals (see section 2.3
(p. 7)).

2.3 Literals

Literals are concrete values specified explicitly in the code. Except for
array literals, they are fixed and cannot change during script execution.
Array literals are more complex and discussed in section 2.5 (p. 11).

SimpleLiteral := NumberLiteral | StringLiteral | BooleanLiteral |
FunctionLiteral | NullLiteral .

m Mobile Shell Reference Version 3.00 7

2. Language c© 2008 airbit AG

Number Literals

A number literal is a sequence of digits, with an optional decimal point,
and an optional decimal exponent. The digits must not be separated by
white space or thousands separators:

print 0
→ 0
print 3.1415927
→ 3.1415927
print 6.02214199e+23
→ 6.022142E+23
print 1E-3
→ 0.001

Integer numbers can also be written in hexadecimal notation, by prefixing
them with 0x:

print 0xff
→ 255
print 0x1000
→ 4096

NumberLiteral :=
Digit {Digit} [’.’ {Digit}]
[(E’ | ’e’) [’-’ | ’+’] Digit {Digit}] |

’0x’ HexDigit {HexDigit} .
Digit :=
’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ .

HexDigit := Digit | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ |
’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ .

String Literals

A string literal is a sequence of characters between single or double
quotes.

print ’Hello, world!’
→ Hello, world!
print "That’s nice"
→ That’s nice

In order to produce all characters, the backslash \ serves as escape for

8 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.3. Literals

the following character. For instance, if the quote used to delimit the
string literal occurs inside the string, it must be escaped. Likewise, the
backslash itself must be escaped, as is often seen in path names:

print "A quote: \"To be, or not to be...\""
→ A quote: "To be, or not to be..."
print ’That\’s nice’
→ That’s nice
print "c:\\system\\apps"
→ c:\system\apps

There are a few characters which have a special meaning when escaped:

\f form feed (ASCII 12)
\n new line or line feed (ASCII 10)
\r carriage return (ASCII 13)
\t horizontal tab (ASCII 9)
\u hexadecimal UNICODE R© (UTF-16) follows

print "Line1\nLine2"
→ Line1

Line2
print "Item1\tItem2"
→ Item1 Item2
print "g\u00e9nial"
→ génial

The maximum length of a string literal is 256 characters.

StringLiteral := ’"’ {Char | EscapeChar | "’"} ’"’ |
"’" {Char | EscapeChar | ’"’} "’" .

Char := (printable ISO-8859-1 char except ’, ", \)
EscapeChar := ’\’ (’n’ | ’r’ | ’t’ |
’u’ HexDigit HexDigit HexDigit HexDigit | (printable char)) .

Boolean Literals

Not surprisingly, there are just two boolean literals: true and false.

BooleanLiteral := false | true .

m Mobile Shell Reference Version 3.00 9

http://www.unicode.org

2. Language c© 2008 airbit AG

Function Literals

A function literal is a reference to a (already declared) function. Section
2.8 (p. 36) explains function references.

FunctionLiteral := ’&’ [ModulePrefix] Identifier .

Null Literal

The null literal denotes a ‘‘special’’ value which is different from all
other values.

NullLiteral := null .

2.4 Variables

A variable is a storage location identified by a name. Values can be
assigned to (stored in) the variable, and the value can later be retrieved
by the same name.

Variable (and function, class and module) identifiers are sequences of
ordinary latin letters, digits, and the underscore character.

• Identifiers must not start with a digit.

• Identifiers are case sensitive, i.e. lowercase and uppercase variants
are different.

• Keywords (see appendix A.2 (p. 78)) cannot be used as identifiers.

• The maximum length of an identifier is 64 characters.

Examples for valid identifiers:

a
Z
AvogadroConstant
avogadro_constant
_4
x1

10 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.5. Arrays

Examples for invalid identifiers:

9a // starts with a digit
end // is a keyword
This_identifier_is_too_long_to_be_accepted_as_it_is_over_64_chars

IdentifierChar := ’A’ to ’Z’ | ’a’ to ’z’ | ’_’ .
Identifier := IdentifierChar {IdentifierChar | Digit} .

There are three different kinds of variables:

• Global variables belong to a module (see section 2.9 (p. 37)) and
exist as long as the process containing the module exists. Global
variables can only be created within the module declaring them.

• Local variables belong to a function (see section 2.8 (p. 32)) and
can only be referenced within their function. They are different
from global variables with the same name, and exist as long as the
function executes: they are created when the function is called, and
are destroyed when the function returns. Hence, each invocation of
a recursive function creates its own set of local variables. Function
parameters are also local variables .

• Class fields belong to a class instance (see section 2.11 (p. 43))
and exist as long as the class instance exists. Class fields are
declared when declaring the class, and created when creating a
class instance. They are different from local and global variables
with the same name.

The distinction between global and local variable references in the code
is made by module prefixes. See section 2.9 (p. 37) for examples and an
explanation.

ModulePrefix := [ModuleName | ’.’] ’.’ .
Variable := [ModulePrefix] Identifier .
ModuleName := Identifier .

2.5 Arrays

Arrays are collections of values. The array values can be of different type,
and they can themselves again be arrays. The individual array elements

m Mobile Shell Reference Version 3.00 11

2. Language c© 2008 airbit AG

are accessed by indexing with integer numbers, starting at 0 for the first
element. Indexing requires putting the index value between brackets [],
following the array variable.

Trying to access an element with a negative or too large index throws
ExcIndexOutOfRange.

Function .len (Library, p. 15) returns the number of elements in the
array.

Arrays are created by array literals, or by functions in module array

(Library, p. 20). An array literal is a comma-separated sequence of
element values between brackets:

a=["One", "Two", "Three"];
print a[0] // first element
→ One
print a[2] // third element
→ Three
print len(a)
→ 3
print a[3] // there is no fourth element
→ ExcIndexOutOfRange thrown

Arrays in m are completely dynamic, i.e. they can grow and shrink in
size. Function .append (Library, p. 7) appends elements to an array:

append(a, "Four", "Five");
print a
→ [One,Two,Three,Four,Five]

Associative Arrays

Array values can also be indexed by strings (‘‘keys’’), making the arrays
‘‘associative’’ and facilitating many programming tasks. Setting or getting
an array element via a string key is a fast operation3. Normally, keys are
case sensitive, but array.new (Library, p. 24) can also create arrays using
case folded keys.

Unlike indexing with numbers, indexing with strings for nonexisting index
values does not throw an exception:

3Internally, keys are organized into a dynamic hash table.

12 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.5. Arrays

• Getting an element for a nonexisting key returns null.

• Setting an element for a nonexisting key appends the element to
the array.

Arrays with string keys can still be indexed using integer values.

In array literals, preceding an element value with a key and a colon adds
the corresponding key:

h=["Joe":150, "Jack":165, "William":180, "Averell":195];
print h["Jack"]
→ 165
print h["Lucky Luke"] // element does not exist
→ null
h["Lucky Luke"]=185; // element is appended
print h
→ [150,165,180,195,185]
print h[2]
→ 180

See also: .append (Library, p. 7), .keys (Library, p. 14), module array

(Library, p. 20).

Literal := SimpleLiteral | ArrayLiteral .
ArrayKey := Expression .
ArrayValue := Expression .
ArrayElement := [ArrayKey ’:’] ArrayValue .
ArrayLiteral := ’[’ [ArrayElement {’,’ ArrayElement}] ’]’ .
Designator := Variable { Selector } [InstanceFunctionReference] .
Selector := ’[’ Expression ’]’ | InstanceSelector .

m Mobile Shell Reference Version 3.00 13

2. Language c© 2008 airbit AG

2.6 Expressions

Generally speaking, expressions define (arithmetic, bitwise, comparison,
or logical) operations on (variable, literal, or function result) operands.

Operands

In m, there are four types of operands:

• Designators: the operand is the value of a variable or array element,
e.g. count, list[i], or a class instance field.

• Function Calls: the operand is the result of a function call, e.g.
io.read(f, 10), math.sin(x). Functions are explained in sec-
tions 2.8 (p. 32) and 2.11 (p. 47).

• Literals: the operand is a literal, i.e. an explicit value, e.g. 42,
"Hello".

• Expression: the operand is an expression in parentheses, e.g.
(7.2*x), (not exists[key]).

Operation Precedence

Each operation has a precedence defining the order in which operations
are executed: as a general rule, arithmetic and bitwise operations are
executed before comparisons, and comparisons are executed before
boolean operations. Within each group, multiplicative operations have
higher precedence than additive ones. Operations of equal precedence
are executed from left to right. The order of execution can be changed
by grouping subexpressions into parentheses.

14 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.6. Expressions

t=3; s=7; m="aha";
print t + 5*s - 2/4 // multiplicative before additive
→ 37.5
print s&4 > t|4 // bitwise before comparison
→ false
print 13>s or m>"b" // comparison before boolean ops
→ true
print (20+t)*(s-24) // parentheses change the order
→ -391

Arithmetic Operators

The arithmetic operators are (P is the precedence):

Op P Description
x+y 4 Addition.
x-y 4 Subtraction.
x*y 5 Multiplication.
x/y 5 Division.
x%y 5 Integer remainder: x - y*trunc(x/y); if y=0, throws

ExcDivideByZero.
-x 6 Change sign of x.

print 22 / 7
→ 3.142857149
print 97 % 11
→ 9
print 97 % -11
→ 9
print -97 % 11
→ -9

Except for %, these operations never throw an exception if an invalid
operation is attempted or overflow or underflow occurs. Instead, the
result becomes (negative or positive) infinity, or zero:

m Mobile Shell Reference Version 3.00 15

2. Language c© 2008 airbit AG

x=1e200;
print x*x
→ Inf
print -2/0
→ -Inf
print 1/x/x
→ 0

Bitwise Operators

Bitwise operators work on integer numbers, treating them like signed
binary numbers of 32 bits. Such operations are typically used to represent
sets of binary states (e.g. flags) in a single value, or for hardware related
operations.

The bitwise operators are (P is the precedence):

Op P Description
x|y 4 Bitwise or.
xˆy 4 Bitwise exclusive or.
x&y 5 Bitwise and.
x shl y 5 Bitwise shift left.
x shr y 5 Bitwise shift right.
˜x 6 Bitwise not.

print 1|2|4|8
→ 15
print 10&(2|4)
→ 2
print 14^11
→ 5
print ~(14&11) & (14|11) // ~(a&b) & (a|b) = a^b
→ 5
print 13 shl 4 // 13*16
→ 208
print 341 shr 2 // trunc(341 / 4)
→ 85
print ~0 // set all bits in signed integer
→ -1
print -5 & ~19
→ -24

16 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.6. Expressions

Concatenation Operator

The concatenation operator concatenates two strings or a string with the
string representation of another value (P is the precedence):

Op P Description
x + y 4 Concatenation: x followed by y.

Note that if neither of the two operands is a string, the two operands
are assumed to be numbers and added.

print "One" + "Two"
→ OneTwo
print "x=" + 3/4
→ x=0.75

Comparison Operators

Comparing two operands always produces a boolean value. Testing for
equality and inequality works for all pairs of operands. Operands of
different types (e.g. a number and a string) are never equal.

Only numbers and strings can be ordered, i.e. compared for less or
greater than. Strings are ordered by their UNICODE R© character values,
which orders uppercase before lowercase, and does not produce a
general lexical ordering. Use .collate (Library, p. 9) to lexically compare
strings.

Trying to order operands other than numbers or strings throws
ExcNotComparable.

Two arrays are only equal if they are the same array. .equal (Library,
p. 9) compares two arrays element by element.

null is only equal to itself.

The comparison operators are (P is the precedence):

m Mobile Shell Reference Version 3.00 17

http://www.unicode.org

2. Language c© 2008 airbit AG

Op P Description
x = y 3 true if x is equal to y.
x # y 3 true if x is not equal to y.
x <> y 3 The same as x # y.
x < y 3 true if x is less than y.
x <= y 3 true if x is less than or equal to y.
x > y 3 true if x is greater than y.
x >= y 3 true if x is greater than or equal to y.

print 7>5
→ true
print "o" + "ne" = "one"
→ true
print "two" < "three"
→ false
print "Two" < "three" // no lexical ordering
→ true
print 14 = "a"
→ false
print 13 # "b"
→ true
print 13 < "14"
→ ExcNotComparable thrown

Class Instance Tests

The class instance test checks whether an expression is an instance of a
given class. In other words, x is C tests whether an assignment

v:C=x

succeeds. Section 2.11 (p. 43) explains classes and class hierarchies.

The class instance test operator is (P is the precedence):

Op P Description
x is C 3 true if x is an instance of class C, or is null.

18 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.6. Expressions

// declare a simple class hierarchy
class C end
class D is C end

// numbers and strings are never class instances
print 7 is C,"hello" is D
→ false false
// test actual instances
x=C()
print x is C, x is D
→ true false
x=D()
print x is C, x is D
→ true true
// null is an instance of all classes
x=null
print x is C, x is D
→ true true

Boolean Operators

The boolean operators are (P is the precedence):

Op P Description
x or y 1 Logical or: true if either x or y is true, false if both

x and y are false.
x and y 2 Logical and: true if both x and y is true, false if

either x or y are false.
not x 6 Logical not: true if x is false, false if x is true.

print false or false, false or true, true or false,
true or true

→ false true true true
print false and false, false and true, true and false,
true and true

→ false false false true
print not false, not true
→ true false

The second operand is only evaluated if the first operand doesn’t already

m Mobile Shell Reference Version 3.00 19

2. Language c© 2008 airbit AG

determine the result. This is often useful when doing combined checks,
as it avoids evaluation of invalid expressions:

ok=m#0 and 17%m = 3 // deadly 17%0 is never evaluated

Expression := Predicate {or Predicate} .
Predicate := Comparison {and Comparison} .
Comparison :=
Sum [(’=’ | ’<>’ | ’#’ | ’<’ | ’>’ | ’<=’ | ’>=’) Sum] |
is ClassIdentifier] .

Sum := Product {(’+’ | ’-’ | ’|’ | ’^’) Product} .
Product := Factor {(’*’ | ’/’ | ’%’ | ’&’ | shl | shr) Factor} .
Factor := [’-’ | ’~’ | not]
(Designator | FunctionCall | IndirectFunctionCall | InstanceCreation |
Literal | ’(’ Expression ’)’) .

See 2.11 (p. 43) for an explanation of class identifiers and instance
creation.

2.7 Statements

Statements are the smallest unit of execution in m. Statements change
values of variables, call functions and control the flow of execution. Most
of the time, several statements are executed in a sequence, one after the
other.

A sequence of statements is called a statement list. Within a statement
list, statements must be separated by a semicolon. This is the only place
where m requires a semicolon. In particular, there is no need to put a
semicolon at the end of each statement4. However, ending or preceding
each statement with a semicolon is not an error, it just produces empty
statements which are ignored during execution.

For instance, the following two code fragments are completely equiva-
lent:

4This minimalistic approach was chosen to reduce the number of control characters
required for a valid m script.

20 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.7. Statements

use math;
function f(x);
return x*x*math.exp(x/40);

end;
for x=0 to 10 by 0.1 do;
y=f(x);
print x,y;

end;

use math
function f(x)
return x*x*math.exp(x/40)

end
for x=0 to 10 by 0.1 do
y=f(x); // this is the only required semicolon
print x,y

end

Statement := |
Assignment | DeclaringAssignment | ConstAssignment |
Increment | Expression |
IfStatement | WhileStatement | DoStatement | ForStatement |
BreakStatement | ReturnStatement | ThrowStatement |
TryStatement | PrintStatement .

StatementList = Statement { ’;’ Statement } .

2.7.1 Assignments

This statement type assigns the value of an expression to a variable
or array element. It also declares the variable if it didn’t occur in
the preceding code yet. A variable can be reassigned as often as
required, generally also with values of different types (although this is
not considered good programming practice, and there is an exception:
variables declared to hold instances of a given class can only be assigned
such instances, or null).

m Mobile Shell Reference Version 3.00 21

2. Language c© 2008 airbit AG

x = 28*3;
x = ["a", "b", "c"];
x[1] = "b2";
x[2] = null;
x["new"] = "d";
print x
→ [a,b,null,d]

When assigning an array, the array is not copied: the expression and the
variable or array element it is assigned to will denote the same array:

ma = ["Ma", "Dalton"];
joe = ma; // joe and ma refer to the same array
joe[0] = "Joe"; // this also modifies ma
print ma
→ [Joe,Dalton]

array.copy (Library, p. 20) copies an array element by element.

If a variable is being declared, i.e. didn’t occur in the preceding code,
it can be marked as constant by prefixing the assignment with const.
Array elements cannot be marked constant: a constant array can be
modified after it has been assigned to another variable.

const C = 2.997e8;
C = 4; // illegal
const A = [1, 2, 3];
A[1] = 7; // illegal
b = A;
b[1] = 7; // perfectly legal, also modifies A[1]
print A
→ [1,7,3]

Assignment := Designator ’=’ Expression .
DeclaringAssignment := VariableDeclaration ’=’ Expression .
ConstAssignment := const VariableDeclaration ’=’ Expression .
VariableDeclaration := Identifier OptionalType .
OptionalType := [’:’ ClassIdentifier] .

Declaring assignments declare a variable to hold only instances of a given
class. See 2.11 (p. 45) for examples and details.

22 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.7. Statements

2.7.2 Increment

This statement type increments or decrements a numeric variable by a
numeric expression (+=, -=), or simply by one (++, -). These statements
are just shorthand notations for full assignments5:

Increment Equivalent Assignment
x += expr x = x + expr

x -= expr x = x - expr

x++ x = x + 1

x- x = x - 1

s=7;
s+=13;
s--;
print s
→ 19

Increment := Designator
(’+=’ Expression | ’-=’ Expression | ’++’ | ’--’) .

2.7.3 If Statement

An if statement executes some code depending on the value of boolean
expressions (e.g. comparisons). Its simplest form executes statements
(the print in the example) if a condition (a > 13) evaluates to true:

a=15;
if a > 13 then
print a + " is greater than 13"

end
→ 15 is greater than 13

An optional else block may contain statements which are executed if
the condition evaluates to false:

5They are not completely equivalent: in s[f(x)]+=3, f(x) is evaluated only once,
whereas in s[f(x)]=s[f(x)]+3, f(x) is evaluated twice.

m Mobile Shell Reference Version 3.00 23

2. Language c© 2008 airbit AG

a=9;
if a > 13 then
print a + " is greater than 13"

else
print a + " is less than 13"

end
→ 9 is less than 13

To test for more than just two alternatives, an arbitrary number of elsif
blocks can be added. These must occur after the if/then and before
the (optional) else block:

a=13;
if a > 14 then
print a + " is greater than 14"

elsif a < 13 then
print a + " is less than 13"

elsif a = 13 then
print a + " is equal to 13"

else
print a + " must be 14"

end
→ 13 is equal to 13

If any of the conditions evaluates to true, the remaining conditions are
not evaluated.

Throws ExcNotBoolean if any of the evaluated conditions is not boolean.

IfStatement := if Expression then StatementList
{elsif Expression then StatementList}
[else StatementList]
end .

2.7.4 While Statement

The while statement repeats some code as long as a condition evaluates
to true. The condition is tested before each repetition.

24 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.7. Statements

a=[430, 241, 187, 53, -1, 17];
s=0; i=0;
while i<len(a) and a[i]>=0 do
s += a[i]; i++

end;
print i, s
→ 4 911

Throws ExcNotBoolean if the condition is not boolean.

WhileStatement := while Expression do StatementList end .

2.7.5 Do-Until Statement

The do statement repeats some code until a condition evaluates to true.
The condition is tested after each repetition.

x=2; y=x;
do
y0=y; y=(y+x/y)/2

until y>=y0;
print y, y*y
→ 1.4142135624 2

Throws ExcNotBoolean if the condition is not boolean.

DoStatement := do StatementList until Expression .

2.7.6 For Statement

The for statement lets an index variable iterate through a range of
numbers or through the elements of an array, and executes some code
for each value. The index variable must be a simple variable, either local
in the current function or global in the current module. It cannot be an
array element or a variable in another module.

• The for loop iterating through a range of numbers looks as follows:

m Mobile Shell Reference Version 3.00 25

2. Language c© 2008 airbit AG

for index=StartExpr to EndExpr [by IncrExpr] do
statements

end

The range is defined by StartExpr and EndExpr, and an op-
tional IncrExpr defining the amount by which the variable is
incremented after each iteration. IncrExpr defaults to 1.

All three expressions are evaluated only once, before the loop is
entered.

The loop exits if index > EndExpr (if IncrExpr > 0), or if index
< EndExpr (if IncrExpr <= 0).

for x=5 to 6 by 0.25 do
print x*x

end
→ 25

27.5625
30.25
33.0625
36

A for loop over a range is equivalent to the following while loop:

index=StartExpr; e=EndExpr; d=IncrExpr;
while d>0 and index <= e or d<=0 and index >= e do
statements;
index += d

end

Care must be taken when using for loops with fractional numbers:
rounding errors may lead to surprising results:

26 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.7. Statements

for i=5 to 6 by 0.2 do
print i

end
→ 5

5.2
5.4
5.6
5.8

print i-6
→ 8.881784E-16

• The for loop iterating through the elements of an array looks as
follows:

for index in ArrayExpr do
statements

end

The array is defined by ArrayExpr. index iterates through all
elements of the array, starting at index 0 and ending with the last
element (index len(ArrayExpr)-1).

a=[430, 241, 187, 53, -1, 17]; s=0;
for x in a do
s += x

end;
print s
→ 927

A for loop over an array is equivalent to the following while loop:

a=ArrayExpr; i=0;
while i<len(a) do
index = a[i];
statements;
i++

end

ForStatement := for IndexVariable
(= Expression to Expression [by Expression] | in Expression)
do StatementList end .

IndexVariable := Identifier .

m Mobile Shell Reference Version 3.00 27

2. Language c© 2008 airbit AG

2.7.7 Case Statement

The case statement executes a sequence of statements depending on
the value of an expression matching the tag or tags of this sequence. It
looks as follows:

case Expression
in TagExpr1:
statements1
in TagExpr2a, TagExpr2b:
statements2

else
statements3

end

This case statement is equivalent to the following if statement:

x=Expression;
if x=TagExpr1 then
statements1

elsif x=TagExpr2a or x=TagExpr2b then
statements2

else
statements3

end

Expression is evaluated only once.

The tags (TagExpr1, TagExpr2a,...) are evaluated when they are tested.
Once a matching tag has been found, the remaining tags are not
evaluated.

Equality of expression and tag is tested using the = operator (see section
2.6 (p. 17)). Arrays are thus not compared elementwise, and string
comparison is case sensitive.

The following example prints a different message for different values of
i:

28 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.7. Statements

for i=1 to 10 do
case i
in 1:
print i,"is somewhat prime"
in 2, 3, 5, 7:
print i,"is prime"

else
print i,"is not prime"

end
end
→ 1 is somewhat prime

2 is prime
3 is prime
4 is not prime
5 is prime
6 is not prime
7 is prime
8 is not prime
9 is not prime
10 is not prime

CaseStatement := case Expression
{ in TagList ":" StatementList }
[else StatementList] end .

TagList := Expression { "," Expression } .

2.7.8 Break Statement

The break statement exits from the loop (while, do-until, for)
containing it, and continues execution after the end of the loop.

x=-3;
while true do
if x<0 then break end;
y=x; x=x/2+1/x;
if x>=y then break end

end;
print x, x*x
→ -3 9

m Mobile Shell Reference Version 3.00 29

2. Language c© 2008 airbit AG

break always exits the innermost loop containing it. Breaking out of an
outer loop is not possible.

BreakStatement := break .

2.7.9 Return Statement

The return statement returns the value of an expression as a function
result. Outside a function, it ends execution of the module’s body; the
return value is discarded.

See section 2.8 (p. 32) for examples.

ReturnStatement := return Expression .

2.7.10 print Statement

The print statement provides a simple way of producing output. It
writes a line with zero, one or several expressions to the console. The
expressions are separated by single spaces. print without expressions
just outputs a new line.

print "odd:",3/7
→ odd: 0.4285714286
print
→

Expressions are formatted depending on their type:

• A Number is printed as string of length 12 or less (and rounded, if
necessary). If the value cannot be represented within 12 characters,
scientific representation is chosen.

print 13.5
→ 13.5
print 3e11
→ 300000000000
print -3e11; // -300000000000 has 13 characters
→ -3E+11

30 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.7. Statements

• A String is printed as is.

print "Hello,", ’world!’
→ Hello, world!

• A Boolean is printed as "true" or "false":

print 1 < 3
→ true

• An Array is printed elementwise, up to a length of 128. Elements
which are themselves arrays are printed as [...<len>].

a=[];
for i=1 to 10 do append(a, i) end;
print a
→ [1,2,3,4,5,6,7,8,9,10]
a[0]=a;
print a
→ [[...<10>],2,3,4,5,6,7,8,9,10]
for i=11 to 100 do append(a, i) end;
print a
→ [[...<100>],2,3,4,5,6,7,8,9,10,11,12,13,14,

15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,...<100>]

• A Function Reference is printed as &module.function.

f=&io.read;
print f
→ &io.read

• The Null value is printed as null.

• A Native Object is printed as type@address. type defines the
object type, address is the location of the underlying native object
in memory.

f=io.create("sample.xml");
print f
→ stream@41255c

m Mobile Shell Reference Version 3.00 31

2. Language c© 2008 airbit AG

For finer control over output formatting, see .str (Library, p. 17) and
module io (Library, p. 36).

PrintStatement := ’print’ [Expression { ’,’ Expression }] .

2.8 Functions

Functions are a way to write repeatedly occuring computations only
once, but use them wherever needed. They also help in structuring
longer scripts into smaller, easily understandable units. By putting
often occuring functions into separate modules (see section 2.9 (p. 37)),
function libraries can be created.

Functions normally have a set of parameters as input and return a single
function result as output. Since the function result can be an array, an
arbitrary number of values can be returned.

The function is left by returning a value with a return statement. If the
function is left by reaching its end, null is returned.

The following example declares a function sqrt computing the square
root of a number x greater than or equal to 1, then calls it with
parameters x=2 and x=9:

function sqrt(x)
y=x;
do
y0=y; y=(y+x/y)/2

until y>=y0;
return y

end // of function sqrt

print sqrt(2), sqrt(9)
→ 1.4142135624 3

This is quite a simple function with a single parameter x and a simple
function result (the value of y).

Multiple parameters are separated by commas. The following function
find finds the index of the first element in an array a with a value equal
to x (there is a standard function for this: array.index (Library, p. 22)).

32 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.8. Functions

function find(a, x)
i=0;
while i<len(a) and a[i]#x do
i++

end;
return i

end

print find([9, 11, 13], 11)
→ 1
print find([9, 11, 13], 8)
→ 3

A function can be recursive, i.e. can call itself: the following function
clone returns a full copy of its parameter t. It uses array.copy (Library,
p. 20) to copy all the elements, and .isarray (Library, p. 12) to test
whether t is an array.

function clone(t)
if isarray(t) then
c=array.copy(t);
// recursively clone the elements
for i=0 to len(t)-1 do c[i] = clone(t[i]) end;
return c

else
return t

end
end

If a function returns an array, the call can be followed by expressions in
brackets accessing certain elements:

a=[’one’:1, ’two’:2, ’three’:3];
print keys(a)[2]
→ three

Function parameters are like local variables; they can optionally be
declared to hold an instance of a given class. Likewise, the function can
be declared to return an instance. See 2.11 (p. 45) for examples and
details.

m Mobile Shell Reference Version 3.00 33

2. Language c© 2008 airbit AG

Optional Parameters

Optional parameters are parameters with a default value: if the parameter
is omitted, the default value is assumed. The expression to compute the
default value can be any expression which is valid in the global context
(i.e. it cannot use a preceding function parameter). It is evaluated when
the function is called, not when the function is declared.

When calling a function, the number of actual parameters must not
be less than the number of mandatory parameters in the declaration
of the function, and not be greater than the total number of declared
parameters.

The following rewrites function find by adding an optional parameter
start indicating the position to start searching at. The default value of
start is 0, so calling find with only two parameters produces exactly
the same result as before:

function find(a, x, start=0)
while start<len(a) and a[start]#x do
start++

end;
return start

end

print find([9, 11, 13], 11)
→ 1
print find([9, 11, 13], 11, 2) // start=2
→ 3

Functions with optional parameters can have options for simplified
syntax in interactive use (see section 3.1 (p. 55)). Options are simply
single character names for optional parameters.

34 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.8. Functions

function grow(years,interest=2) /i:interest
a=1;
while years>0 do
a+=a*interest/100; years--

end;
return a

end

grow(10,5)
→ 1.21899442
grow/i=5 10 // works only in interactive shells
→ 1.6288946268

Forward Declaration

Functions must be declared before they can be used. This means that
if two functions call each other, at least one must be declared with
forward and implemented later. In the following example, either f or
g must be forward declared, since function f calls function g and vice
versa:

function g(x, a=3.2) forward // g is made known

function f(x)
if x<3 then
return g(x*x) // g is called

else
return x+2

end
end

function g(x, a=3.2) // here g is declared
return f(x+a)

end

The default values of the optional parameters of the forward declared
function are only used to mark optional parameters, their values are
ignored. The default values are taken from the function implementa-
tion. The number of mandatory and optional parameters in forward
declaration and implementation must match.

m Mobile Shell Reference Version 3.00 35

2. Language c© 2008 airbit AG

Function References

Function references allow to change the function called in an expression
during the execution of a script: when a function reference is assigned
to a variable or a parameter, the function can be called via the variable.
The reference of a function is obtained by prefixing it with an ampersand
character &:

f=&lower; // f now references the lower function
print f("Hello") // a call to lower
→ hello
f=&upper; // f now references the upper function
print f("Hello") // a call to upper
→ HELLO

Function references are often used to pass a function as a parameter
to another function: the function integ approximates the integral of f
from a to b:

function integ(f, a, b, n=100)
s=(f(a)+f(b))/2; h=(b-a)/n;
for i=1 to n-1 do
s+=f(a+i*h)

end;
return s*h

end

function inv(x) return 1/x end
print integ(&inv, 1, 2)
→ 0.6931534305
print integ(&math.sin, 0, math.pi/2)
→ 0.9999794382
print integ(&math.sin, 0, math.pi/2, 10000)
→ 0.9999999979

36 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.9. Modules

FunctionDeclaration := function Identifier FunctionBody .
FunctionBody := ’(’ [ParameterList] ’)’ OptionalType
(forward | {FunctionOption} StatementList end) .

ParameterList := (MandatoryParameter {’,’ MandatoryParameter} |
OptionalParameter) {’,’ OptionalParameter} .

MandatoryParameter := VariableDeclaration .
OptionalParameter := VariableDeclaration ’=’ Expression .
FunctionOption := ’/’ OptionName ’:’ ParameterName .
OptionName := IdentifierChar | Digit .
ParameterName := Identifier .

ActualParameterList := Expression {’,’ Expression} .
FunctionCall :=
([ModulePrefix] Identifier ’(’ [ActualParameterList] ’)’
{ Selector } [InstanceFunctionReference] .

IndirectFunctionCall :=
Designator ’(’ [ActualParameterList] ’)’
{ Selector } [InstanceFunctionReference] .

2.9 Modules

A module in m is a script (a text file) which can be loaded by other scripts,
giving access to the functions and variables declared in the module.

Modules serve two purposes:

• They help in structuring complex scripts and make them easier to
understand and maintain.

• They offer a way of extending the functionality of m by adding
new functions which can then be used by all scripts or interactive m
sessions. Entire libraries of often needed functions can be created
that way. The standard library of m described in the next chapter
is organized into modules.

To load a module, a use clause is required:

use ModuleName1, ModuleName2, ...

This loads the modules ModuleName1, ModuleName2 and so on, and
initializes them, i.e. executes their main code . Each module is only
initialized once per process, even if it is loaded several times by different
modules.

Module names are not case sensitive, since they are related to file names
on the underlying operating system.

m Mobile Shell Reference Version 3.00 37

2. Language c© 2008 airbit AG

use System // load module "system"
print System.appdir; // this will work
print system.appdir // this is the same

An alias name can be used in addition to the module name to denote
the module, e.g. to abbreviate a long module name. Alias names are
local to the module containing the use clause. Like module names, they
are not case sensitive:

use ModuleName as AliasName

As an example, consider the following module accounts maintaining a
list of accounts and allowing transfers between them:

S=[]; // initialization of the module
function get(nr)
x=accounts.S[nr];
// all accounts start at zero
if x=null then x=0 end;
return x

end
function xfer(f, t, x)
..S[f]=get(f)-x;
..S[t]=get(t)+x

end

Within the functions, the global variable S must be prefixed by the
module name (accounts.S), or by the double dot prefix indicating the
current module (..S).

The module can then be used as follows:

38 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.9. Modules

// load the module and name it ’acc’.
use accounts as acc
// transfer money out of the blue to the bank
acc.xfer(’blue’, ’bank’, 100000);
print acc.get(’bank’)
→ 100000
// transfer money from the bank to the Daltons
acc.xfer(’bank’, ’Daltons’, 10000);
print acc.get(’bank’)
→ 90000
// show all accounts
print acc.S
→ [-100000, 90000, 10000]

Module Prefixes

Global variables and functions must normally be prefixed by the name of
the module defining them (or the corresponding alias), and a dot. The
prefix for the main script and the builtin functions and variables is just a
dot, without a name.

Within a module, global variables and functions of the same module can
be prefixed by a double dot ..: in the code for module accounts above,
..S denotes the same variable as accounts.S.

The prefixing is not always required when the variable or function is
referenced in the module containing it. Furthermore, functions declared
in the main script or builtin standard functions only need a prefix if a
function with the same name exists in the current module. The following
table summarizes how variables and functions without module prefix are
interpreted:

Variable x Function f

main module global .x .f

function in main module local x .f

module M global M.x M.f if it exists, .f otherwise
function in module M local x M.f if it exists, .f otherwise

m Mobile Shell Reference Version 3.00 39

2. Language c© 2008 airbit AG

Module Version

Each module has a version, which is a number in the form major.minor;
the minor component by convention has a 1/100th granularity.

The module version is a special variable version, which can only be
modified in the module itself by assigning a number literal to it. If
no number has been assigned, the version is 0.0. The version of an
uncorrectly loaded optional module (see below) is null.

Source of module client:

version=1.23

use client
// require at least version 1.20 of client module
if client.version>=1.20 then
...

end

The version of the builtin module is always the version of the m applica-
tion. See also .version (Library, p. 19).

Optional Modules

Not all devices support all modules, or a module may simply not be
installed on a device. To cope with these cases in the code, a module
can be loaded in a use clause with the try prefix:

use try ModuleName

Loading a module with the try prefix has the following effects:

• If the module and all the modules it uses are correctly loaded, the
result is almost the same as without try. However, a reference
to an undeclared function or variable of the module will not be
detected until the code reaches the corresponding statement and
throws ErrNotAvailable. This allows to run code even if some
functions or variables of a module do not exist.

• If the module ModuleName itself or one of the modules it uses is not
found or cannot be loaded, no error is marked. However, all refer-

40 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.10. Exceptions

ences to its variables and functions will result in ErrNotAvailable

being thrown; only the module’s version variable is accessible
and will return null.

use try nirvana
nirvana.f(1, 2)
→ ErrNotAvailable thrown
print nirvana.val
→ ErrNotAvailable thrown
// nirvana.version is null: the module cannot be used
print nirvana.version
→ null

use try math
// there is no sinh function in module math
print math.sinh(1.2)
→ ErrNotAvailable thrown
// math.version is not null: the module can be used
print math.version
→ 1.08

ModuleImportList := use ModuleImport { ’,’ ModuleImport } .
ModuleImport := [try] ModuleName [as AliasName] .
AliasName := Identifier .

2.10 Exceptions

An exception is the result of an attempt to perform an invalid operation.
By default, exceptions result in a popup window showing the exception
message text.

An exception thrown by m will always have the following format:

ExceptionFormat := tag ’:’ message

The tag is always an (english) identifier, and independent of the language
chosen when installing m. The message however depends on the
language. See section A.1 (p. 73) for a list of m exception tags.

m Mobile Shell Reference Version 3.00 41

2. Language c© 2008 airbit AG

Catching Exceptions

Exceptions can also be handled (‘‘catched’’) in m itself:

try
// code potentially throwing exceptions

catch exc by
// code handling the exception exc

end

The result of such a try block is the following:

• If the code between try and catch does not throw any exception,
the code between catch and end will never be executed.

• If the code between try and catch does throw an exception, the
exception will be assigned to the variable denoted by catch and
the following code will be executed.

In the following example, a[1] tries to access an non-existing element. m
throws an ExcIndexOutOfRange, which is catched and simply printed:

try
a=[12];
print a[1]

catch e by
print "Got", e

end
→ Got ExcIndexOutOfRange: Array index is out of range

Try blocks can be nested to any depth (as long as the required memory
is available).

TryStatement := try StatementList
catch ExceptionVariable by StatementList end .

ExceptionVariable := Identifier .

Throwing Exceptions

Exceptions can also be thrown explicitly in the code:

throw expression

42 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.11. Object Oriented Programming

This will evaluate expression and use it as exception message. In the
following example, an exception with the message ‘‘state.dat does not
exist’’ will be thrown if this file does not exist.

if not files.exists("state.dat") then
throw "state.dat does not exist"

end

ThrowStatement := throw Expression .

2.11 Object Oriented Programming

Starting with version 3.00, m offers the following OOP features:

1. Classes with fields and (virtual) functions.

2. Single inheritance to build class hierarchies.

3. Creation of class instances (objects) and initialization with construc-
tor functions.

4. Polymorphism through function overriding.

5. Instance function references providing a callback mechanism for
listeners or event handlers (‘‘delegates’’).

Classes and Class Instances

A class is a declaration of related variables (fields) and functions (‘‘meth-
ods’’) operating on them. A class only declares a type or pattern; the
data is created by creating class instances.

Classes can be based on existing classes, inheriting all their fields and
functions. Inherited functions can be overwritten to change the behaviour
or functionality offered by the class.

A class is declared by the keyword class followed by the class name, its
fields and its functions, followed by the keyword end:

m Mobile Shell Reference Version 3.00 43

2. Language c© 2008 airbit AG

class Sum
s
function add(x)
s+=x

end
function res()
return s

end
end

This declares a class Sum with a field s, and two functions: one to add a
value x to s, the other to return the sum of all added values.

A class always belongs to the module declaring it (which can be the
builtin module or main script). A class is hence uniquely identified by
the module declaring it and its name within the module: if class Sum is
declared in module Aggreg, it must be referenced as Aggreg.Sum (or
with the corresponding alias of Aggreg) in other modules.

Classes must be declared before they can be used. This means that if
two classes reference each other, at least one must be declared with
forward and defined later. In the following example, either C or D must
be forward declared, since class C references class D and vice versa:

class C forward // make C known, without any details

class D
x: C // C can be used, but C.y is not yet visible

end

class C // define C
y
function f(d: D)
return y*d.x.y

end
end

ClassIdentifier := [ModulePrefix] Identifier .
ClassDeclaration := class Identifier
(forward | [is ClassIdentifier] ClassBody end) .

ClassBody := { VariableDeclaration | FunctionDeclaration [’;’] } .

44 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.11. Object Oriented Programming

Variable Declarations, revisited

A variable can be declared to always reference an instance of a given class
(or to be null). This allows to directly access the fields and functions of
the instance. For instance, to declare a variable x referencing an instance
of Sum, follow the first assignment (i.e. the ‘‘declaration’’) of x by a colon
and the class it references:

x:Sum=null

A variable cannot be redeclared, or declared lazily: the first assignment
occuring in the source must declare its type, or it remains of undeclared
type (like an ordinary m variable).

Whenever an expression is assigned to a variable of declared class, the
value being assigned is checked. If it is not an instance of the declared
class and not null, ExcNotSuchInstance is thrown:

x:Sum=null
a=23*7
x=a // a holds a number, not a Sum instance
→ ExcNotSuchInstance thrown

Function Declarations, revisited

Function parameters are like local variables, and can be declared to
hold instances of a given class. For example, a function to multiply an
instance s of Sum by a factor f and returning the resulting instance can
be declared as follows:

function multiply(s: Sum, f): Sum
...

end

As with assignments to variables of declared class, the expressions
assigned to the parameters are checked when calling the function, and
the return value is checked when returning a value from the function:

m Mobile Shell Reference Version 3.00 45

2. Language c© 2008 airbit AG

multiply("no sum", 3)
→ ExcNotSuchInstance thrown

function getsum(): Sum
return "also no sum"

end
y=getsum()
→ ExcNotSuchInstance thrown

Class Fields

A useful class normally contains fields, i.e. variables which each class
instance holds. Fields are declared by simply listing their name in the
class body, optionally separated by semicolons. A field must be declared
before it can be referenced in a function. When an instance is created,
all its fields are initialized to null.

Class fields are accessed as follows:

• To access a class field of an instance variable with declared type,
append a dot and the field name:

s:Sum=...
s.s=0

• To access a class field of an expression without declared type, it
must be ‘‘casted’’ to the desired type before accessing any of its
fields. ExcNotSuchInstance is thrown if the expression is not an
instance of the desired type.

sums=[...]
print sums[3].(Sum)s // accessing s requires a cast

• Within a class function, class fields are directly accessible, as shown
in functions add() and res() of class Sum: s can be used like any
other variable.

InstanceSelector := ’.’ [’(’ ClassIdentifier ’)’]
(FieldIdentifier | FunctionIdentifier ’(’ [ActualParameterList] ’)’) .

46 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.11. Object Oriented Programming

Class Functions

Most classes also contain functions. Class functions operate on an
instance, i.e. its fields. For instance, the function add in class Sum adds a
value to the field s of the instance.

Within a function of class C, the instance is accessible via the (predeclared)
parameter-like variable this:C. Explicitly mentioning this to access an
instance field may be required if there is a parameter of the same name:

class C
x
function setx(x)
this.x=x // assign parameter x to field x

end
end

The rules for calling class functions are the same as those on accessing
class fields:

• To call a class function on an instance variable with declared type,
append a dot and the function name:

s:Sum=...
s.add(3) // call add on s

• To call a class function on an expression without declared type,
it must be ‘‘casted’’ to the desired type before calling any of its
functions. ExcNotSuchInstance is thrown if the expression is not
an instance of the desired type.

sums=[...]
sums[3].(Sum)add(4) // requires a cast to Sum

• Within a class function, another function of the class can be called
directly, without first denoting the instance.

m Mobile Shell Reference Version 3.00 47

2. Language c© 2008 airbit AG

class Sum
...
function addtwice(x)
// same as this.add(x); this.add(x)
add(x); add(x)

end
end

There are two ways to define a class function: either directly within the
class body, or by declaring it as forward and then defining it outside the
class, by prefixing the function name by the class identifier. The latter
may be required when classes and their functions are referencing each
other.

class C forward // make C known, without any details

class D
x: C // C can be used, but C.y is not yet visible
function mult(a) forward

end

class C // define C
y

end

function D.mult(a) // C is defined, now define D.mult
return x.y*a

end

The next section shows how class functions can be overwritten in
subclasses.
ClassFunctionDeclaration := function ClassName ’.’ Identifier
FunctionBody .

Inheritance, Sub- and Superclasses

One of the key properties of classes is their extensibility: new classes
can be declared based on existing classes, inheriting their fields and
functions. By overriding functions, the behaviour of class instances can
also be extended or modified.

48 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.11. Object Oriented Programming

To define a new class extending an existing class, append is and the
existing class name after the new class identifier:

class Avg is Sum
n // element counter to calculate the average
function add(x) // overrides Sum.add()
s+=x; n++

end
function res() // overrides Sum.res()
return s/n

end
function count()
return n

end
end

This establishes the following simple class hierarchy:

• Avg is a subclass of Sum (each class can have many subclasses).

• Sum is the superclass of Avg (each class except .Instance (p. 51)
has exactly one superclass).

Since Avg extends Sum, it inherits its field s and its functions add() and
res(). The functions are overwritten to implement averaging behaviour,
and the extended class also gets a new function count() returning the
element count.

The functions of the superclass are always accessible by the builtin
parameter super. It references the current instance like this, but seen
an instance of the superclass when determining which function to call.
Hence, the overriding functions in Avg could also be written as:

function add(x) // overrides Sum.add()
super.add(x); n++

end
function res() // overrides Sum.res()
return super.res()/n

end

By declaring class functions as forward without implementing them,
abstract classes can be declared. For instance, an interface-like abstract

m Mobile Shell Reference Version 3.00 49

2. Language c© 2008 airbit AG

class Aggregator could be the base class of all aggregating classes Sum
and Avg:

class Aggregator
function add(x) forward
function res() forward

end

class Sum is Aggregator
...

Instance Creation and Constructors

Defining a class also defines a function of the same name, its creator
function. Calling this function has the following effects:

1. A new instance of the class is created.

2. All fields of the class (and its superclasses) are set to null.

3. The class constructor function init() of the new instance is called,
with the parameters that were passed to the creator function.

4. The new instance is returned.

// create a new Sum instance and assign it to x
x:Sum=Sum()
print x
→ .Sum(s=null)

Defining (overriding) the init() function of Sum, its field s can be
properly initialized to zero:

class Sum
s
function init()
s=0

end
function add(x)
...

end

50 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.11. Object Oriented Programming

x:Sum=Sum()
print x
→ .Sum(s=0)

The init() function can take arbitrary parameters, and they can be
different in number and type for each superclass:

class Person
name
height

function init(name="unknown",height=180)
this.name=name; this.height=height

end
end
print Person()
→ .Person(name=unknown,height=180)
print Person("Lucky Luke")
→ .Person(name=Lucky Luke,height=180)
print Person("Joe",155)
→ .Person(name=Joe,height=155)

Note that there are no destructor functions in m. Class instances which
are no longer needed are automatically deleted by the garbage collector,
without explicit cleanup.

InstanceCreation := ClassIdentifier ’(’ [ActualParameterList] ’)’ .

The .Instance Base Class

There is a single builtin class .Instance which is the implicit base class
of all classes. It is declared as an empty class with empty constructor
function:

class Instance
function init() end

end

The following two declarations are therefore equivalent

m Mobile Shell Reference Version 3.00 51

2. Language c© 2008 airbit AG

class Sum
...

end
class Sum is .Instance
...

end

Even though it generally makes little sense, it is perfectly valid to create
an instance of .Instance:

x:.Instance=.Instance()

Instance Function References

An instance function reference is like a function reference (see section
2.8 (p. 36)), but always operates on a given instance defined when
obtaining the reference.

Instance function references are most useful to implement callbacks in
an object oriented environment, for instance event listeners. Sometimes
they are also called ‘‘delegates’’ or ‘‘delegate functions’’, since the
function reference acts like a delegate of the instance passed to another
instance.

Consider the following function passing values in array a to a consumer
function c:

52 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 2.12. Source Structure

function consume(a, c)
for v in a do
c(v)

end
end
function out(n)
print n

end
consume([7,-8,9], &out) // ordinary function reference
→ 7

-8
9

s:Sum=Sum()
consume([7,-8,9], s.&add) // instance function reference
print s, s.res()
→ .Sum(s=8), 8

The second call to consume() calls s.add(v) on each call of c(v).
InstanceFunctionReference :=
’.’ [’(’ ClassIdentifier ’)’] ’&’ Identifier .

2.12 Source Structure

After introducing all elements of the m language, the complete structure
of an m source can be defined:
MSource := { ModuleImport | FunctionDeclaration | ClassDeclaration |

ClassFunctionDeclaration | StatementList } .

The StatementLists (there can be several) are the ‘‘main code’’ of the
script which is executed directly. In a module, this corresponds to the
module initialization code which is executed the first time the module
occurs in a use clause.

m Mobile Shell Reference Version 3.00 53

2. Language c© 2008 airbit AG

54 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG

3. Interactive Shells
m cannot only execute complete scripts, it can also be used interactively,
as a shell. When working in shell mode, there are a few differences to
normal m scripts:

• m statements are executed interactively: m code can be entered
and is executed immediately. Global variables and functions are
preserved between executions.

• The syntax allows some simplifications (see section 3.1 (p. 55)).

• Each time a shell is created, it loads and executes autoexec.m

before prompting the user. The script is first searched among the
ordinary scripts in system.docdir (Library, p. 50). If it is not found,
the default script in system.appdir (Library, p. 49) is executed.

3.1 Simplified Syntax for Interactive Use

Since input capabilities of cellphones are poor, interactive shells support
a simplified syntax for function calls, and automatic output of computed
expressions:

• A single Expression will be executed as ’print’ Expression,
unless it is null:

m>0.85*23.10
→ 19.635
m>use math as m
m>m.sin(m.pi/4)
→ 0.7071067812

• A SimpleFunctionCall calls a function with only string or number
literal parameters, and options defined for the function.

m Mobile Shell Reference Version 3.00 55

3. Interactive Shells c© 2008 airbit AG

Unquoted words (sequences not containing white space) on
the command line which are not keywords (see appendix A.2
(p. 78)) and are not starting with a digit or separator are
interpreted as string parameters.

Numbers are interpreted as numeric parameters.

Options for optional parameters (see section 2.8 (p. 32)) can
be specified anywhere with a preceding slash. If an equal
sign follows, the following word or number is assigned to the
corresponding parameter. If no equal sign follows, true is
assigned to the corresponding parameter.

Commas to separate the parameters are not permitted.

Again, the function result is printed if it is not null:

m>date // maps to date()
→ 2005-02-07 11:03:07
m>dir c:*.m/r // maps to dir(’c:*.m’, true)
→ C:\system\apps\mShell\autoexec.m

C:\documents\mShell\Jukebox.m

Simple function calls can only be used to call functions with
parameters which are string or number literals.

SimpleFunctionCall :=
[ModulePrefix] Identifier {SimpleParam | SimpleOption} .

SimpleParam :=
SimpleChar {SimpleChar} | StringLiteral | NumberLiteral .

SimpleOption := ’/’ (IdentifierChar | Digit) [’=’ SimpleParam] .
SimpleChar :=
(printable ISO-8859-1 char except white space and ’/’) .

3.2 Shell Builtin Functions

autoexec.m declares a number of function for interactive use. Most are
just wrappers around existing functions, to avoid typing longer names.
With these functions, files on the phone can be easily manipulated:

56 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 3.2. Shell Builtin Functions

// list all JPG files on the current drive
dir *.jpg/r/l
→ -- 05-08-09 2966 \documents\mShell\GraphTest.jpg

-- 11:37:02 17909 \Nokia\Images\FE_img\FEscr(0).jpg
...

// copy the JPG files in \documents\mShell to drive e:
cp \documents\mShell*.jpg e:
→ 1
// search for the mShell properties file
dir *.prp/r
→ \System\Apps\mShell\mShell.prp
// show its contents
type \system\apps\mShell\mShell.prp
→ mfont=LatinPlain12

outsize=20000
keep=busy

If a customized autoexec.m in system.docdir is created without
incorporating the original script, these function are no longer available.

.cp

• function cp(src, dst, recursive=false)→ Number

/r:recursive

Copies a file, files matching a pattern, or an entire directory tree. Wrapper
for files.copy (Library, p. 29).

.del

• function del(pattern, recursive=false)→ Number

/r:recursive

Deletes a file, files matching a pattern, also in complete directory tree.
Wrapper for files.delete (Library, p. 29).

m Mobile Shell Reference Version 3.00 57

3. Interactive Shells c© 2008 airbit AG

.dir

• function dir(pattern="*", recursive=false, long=false,
hidden=false, modified=0)→ null

/h:hidden

/l:long

/m:modified

/r:recursive

List files matching pattern on standard output. If pattern is a directory,
lists all files in it. Options are the following:

• With /h (hidden=true), also lists hidden files and directories.

• With /l (long=true), lists files and directories in a long format,
including readonly and hidden attributes and modification date
(format YY-MM-DD or hh:mm:ss).

• With /m=secs (modified=secs), lists only files which were modi-
fied within the last secs seconds.

.edit

• function edit(name)→ null

Loads a file into the builtin editor and shows it. Wrapper for files.edit
(Library, p. 30).

.exit

• function exit()→ null

Exit this shell. This is equivalent to closing it. This function is only available
if module proc is available.

.md

• function md(path, all=false)→ Number

/a:all

58 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 3.2. Shell Builtin Functions

Creates a directory or directories. Wrapper for files.mkdir (Library,
p. 31).

.mv

• function mv(src, dst, recursive=false)→ Number

/r:recursive

Moves a file, files matching a pattern, or an entire directory tree. Wrapper
for files.move (Library, p. 31).

.rd

• function rd(path, recursive=false)→ Number

/r:recursive

Removes a directory or an entire directory tree. Wrapper for
files.rmdir (Library, p. 33).

.ren

• function ren(old, new)→ Number

Renames a single file. Wrapper for files.rename (Library, p. 32).

.run

• function run(script, show=false)→ null

/s:show

Run another m script. If show=true, the script’s console is shown. This
function is only available if module proc is available.

.send

• function send(name, subject=null)→ null

Interactively sends a file over a channel chosen by the user. Wrapper for
files.send (Library, p. 34).

m Mobile Shell Reference Version 3.00 59

3. Interactive Shells c© 2008 airbit AG

.type

• function type(file, utf16=false, tail=false)→ null

/u:utf16

/t:tail

Writes the contents of file to standard output.

If utf16=true, assumes the file to be UTF-16 little endian encoded.
Otherwise, raw encoding is assumed.

If tail=true, only outputs the last 300 bytes. If tail=n where n is a
number, outputs the last n bytes.

60 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG

4. Producing Standalone
Applications
Standalone applications for Symbian OS can easily be produced from
applications written in m, resulting in standard .sis files. These can be
installed on other devices, without requiring previous installation of m.

Since the .sis creation process depends on several resources and
supports all platforms for which m is available, it is currently implemented
as a web application, available at www.m-shell.net/Makemsis.aspx.

4.1 Input Files

The input to the conversion consists of several files:

• One .mex File of the complete m code of your application (.mex
files are created from within the m application). This is the only
mandatory file.

If your application requires other .mex files which will be spawned
as subprocesses from the main application, they must go into a
‘‘Document Directory Zip File’’.

• An optional Icon File for the icon of your application. This should
be a .svg (Scalable Vector Graphics) file, stored using the Tiny
SVG profile1. Bitmap icons (PNG, GIF, JPEG) can also be submitted,
and the web application will attempt to vectorize them, but do not
expect brillant results in this case.

If no icon file is supplied, a default icon will be used.

1Tools to create SVG icons include Adobe Illustrator or Inkscape.

m Mobile Shell Reference Version 3.00 61

http://www.symbian.com
http://www.m-shell.net/Makemsis.aspx

4. Producing Standalone Applications c© 2008 airbit AG

• Optional Embedded SIS Files. These are .sis files contain
components your application depends on and may or may not be
already installed, for instance your own native modules.

• Optional Document Directory Zip Files. These are .zip files
whose contents will be extracted into the document directory
during installation. The (system.docdir) constant contains the
path to this directory, and it is also the current directory when the
application starts.

• Optional Absolute Path Zip Files. These are .zip files whose
contents will be extracted into the root of the installation drive,
allowing to put files into arbitrary locations not related to the
application directory.

The files you submit will be combined into a single .sis file.

makemsis
web

application

MyApp.mex

MyIcon.svg

MyDocFiles.zip

MyAbsFiles.zip

MyPackages.sis

MyPlatform

S60 2nd

MyApp.sis

S60 3rd

MyApp.sis

MyApp.sis
UIQ2

UIQ3

MyApp.sismEnvironment.sis

UIQ3
mEnvironment.sis

UIQ2
mEnvironment.sis

S60 3rd
S60 2nd

mEnvironment.sis

62 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG 4.2. Settings

4.2 Settings

The following settings configure the characteristics of the generated
application and the .sis file:

• Platform: the platform for which you want the .sis file. This is
the only mandatory setting.

• UID: the UID (UID3) of your application, uniquely identifying it in
the Symbian Universe. The UID is a 32-bit number and must be
specified as eight hexadecimal digits (e.g. e7a1f1c0). If you don’t
specify a UID, the conversion process will pick one based on the
name of your .mex file, so the same file name will also produce
the same UID each time you create the .sis file.

For any application you plan to distribute, you should obtain an
UID from Symbian. Picking one randomly may cause a conflict of
your application with other applications. Note also that the valid
UID range depends on the platform and signing type.

• Application Name: a short name for your application, shown to
the user. It must not contain quotes or unprintable characters, and
defaults to the .mex file name.

• Caption: a caption for your application, shown to the user. It must
not contain quotes or unprintable characters, and defaults to the
Application Name.

• Description: a description for your application, presented to the
user during installation. It must not contain quotes or unprintable
characters, and defaults to the Caption.

• Version: the version number of your application, presented to the
user during installation. It must be in the format x.yy, and defaults
to 1.00.

• Include m Environment: whether the produced .sis file should
embed the m runtime environment. You should probably only
uncheck this box:

m Mobile Shell Reference Version 3.00 63

4. Producing Standalone Applications c© 2008 airbit AG

Either during testing, as the resulting .sis will be much
smaller and the environment is already present on a device
where m is installed.

Or if you are requesting Extended or Certified capabilities
and are going to sign the resulting .sis yourself.

• Vendor: the name of the vendor of your application (probably your
name), presented to the user during installation if you will properly
sign your application. It must not contain quotes or unprintable
characters, and defaults to ‘‘m User’’.
This setting is ignored for 2nd edition platforms.

• Don’t sign sis file: normally, the produced .sis file will be
self signed and ready to install. Check this if you are requesting
Extended or Certified capabilities and are going to sign the
resulting .sis yourself.
This setting is ignored for 2nd edition platforms.

• Capability Set: the requested set of capabilities (see also 6.1
(p. 67)). The required capabilities depend on the m functions
your application is using. If they require Extended or Certified
capabilities, you should not include the (self signed) m environment,
and must sign the .sis file yourself.
This setting is ignored for 2nd edition platforms.

64 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG

5. SMS Control
If the m Supervisor & Viewer application is installed, the m application
can be controlled via SMS commands. Commands must be prefixed by
the smskey configured in the properties (see section A.3 (p. 78)).

The available SMS commands are:

• smskey run script args: starts the m application if it is not
already running, then starts the script script with the arguments
args. Use function proc.args to get the arguments from within
the script. If the script is already running, this command is ignored.

• smskey shutdown: stops all scripts and exits the m application. If
m is not running, this command is ignored.

• smskey start: starts the m application. If m is already running,
this command is ignored.

• smskey status: m status inquiry, replies with an SMS describing
the status of the m application and some GSM information. If m is
running, the reply will look like:

m status: running, mem=mem,
net=mcc,mnc, loc=lac,cid, sig=signal

If m is not running, the reply will look like:

m status: NOT running (category reason),
net=mcc,mnc, loc=lac,cid, sig=signal

The meaning of the fields is the following:

m Mobile Shell Reference Version 3.00 65

5. SMS Control c© 2008 airbit AG

mem bytes of memory used by m
category m exit category (if panicked)
reason m exit reason (if panicked)
mcc GSM mobile country code
mnc GSM mobile network code
lac GSM location area code
cid GSM cell id
signal GSM signal strength

• smskey status phone: like status above, but the response is
sent to phone number phone. phone must not contain white
space.

• smskey stop script: stops execution of script script. If script
is not running, this command is ignored.

The following examples require the smsctrl property to be enabled,
and smskey to be set to mshell:

1. SMS to start the m application:

mshell start

2. SMS to start the Supervisor script, passing it 0769988776 as an
argument:

mshell run Supervisor 0769988776

3. SMS to check the status of the m application:

mshell status
→ m status: NOT running (E32USER-CBase 71),

net=228,115, loc=1616,17689, sig=3

m is not running because it crashed with a E32USER-CBase 71
panic. The phone is somewhere near cell 17689 in area 1616 of
the Swisscom GSM network.

66 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG

6. m and Symbian
Platform Security

With the 3rd edition of its OS, Symbian OS has introduced platform
security, with mandatory signing of applications and libraries. Platform
security constrains runtime environments like m, in particular those like
m which permit software development directly on the device.

6.1 Capabilities

Platform security is implemented by granting applications, libraries and
processes created from them capabilities. Although somewhat similar to
the user permissions described in the previous section, capabilities are
completely independent of user permissions. Successfully executing an
m function requires both: the corresponding user permissions granted
by m and the capabilities granted by the OS:

• If a function is not permitted by the m user, it throws
ExcNotPermitted.

• If a function is not permitted by platform security, it throws
ErrPermissionDenied.

Regarding m, capabilities currently can be split into four classes:

• The basic capabilities, always available in m. These are the only
capabilities granted when m has been ‘‘self signed’’, i.e. signed
with a certificate generated by the m developers (or by yourself, if
you have downloaded the corresponding tools). Basic capabilities
must be granted by the user when installing the m application.
Note that the default setting on some Symbian 3rd Edition devices
disallows installing self signed applications; the setting can usually

m Mobile Shell Reference Version 3.00 67

http://www.symbian.com

6. m and Symbian Platform Security c© 2008 airbit AG

be changed from the program manager application. A few devices
completely prevent installation of self signed applications.

A special rule applies to the ‘‘Location’’ capability required to access
network and cell information: in m, it is considered an extended
capability, even though it is a basic one on many devices. The
self signed m package therefore does not include it to remain
installable on as many devices as possible.

• The extended capabilities, always available on Symbian 2nd Edition
phones, and when m has been open signed (see next section), or
by the Symbian Signed process.

• The certified capabilities, always available on Symbian 2nd Edition
phones, and when m has been signed with a developer certificate
(see section 6.3 (p. 69)), or by the Symbian Signed process.

• The approved capabilities which are only granted by the platform
producer or the phone manufacturer. m on Symbian 3rd Edition
phones currently does not support any of the functions requiring
approved capabilities.

The View→About dialog and the system.caps (Library, p. 50) constant
indicate the capabilities granted to the m process:

system.caps Granted capabilities
basic Only basic.
extended Basic and extended.
certified Basic, extended and certified.
all Basic, extended, certified and approved. Currently

only available on Symbian 2nd Edition phones.

As the platform security framework is not stable yet, it can be changed
anytime by Symbian. Please refer to the official symbian documen-
tation for up to date information. For a list of capabilities, see e.g.
forum.nokia.com/main/platforms/s60/capability_descriptions.html.

6.2 Open Signing Online

If you want to use m with extended capabilities on a single Symbian 3rd
Edition phone, the easiest way is to have it signed online. The online

68 m Mobile Shell Reference Version 3.00

http://forum.nokia.com/main/platforms/s60/capability_descriptions.html

c© 2008 airbit AG 6.3. Open Signing with a DevCert

signed install package has the following restrictions:

• It is bound to a single IMEI, i.e. a specific device.

• Its validity is currently limited to 36 months.

To online sign m, follow these steps:

1. Get the IMEI of the device you want to install m on. Within m, you
can obtain it from gsm.imei (Library, p. 197). Or dial *#06# on
the phone.

2. Locate the unsigned online signable version of the m installation
packages for your device, e.g. mEnvironment-S60-3rd-OS.sis
and mShell-S60-3rd-OS.sis.

3. Go to Symbian Signed, enter your IMEI, the mEnvironment installa-
tion package to upload, your e-mail address, and select all capabili-
ties. The online signable version of m requires at least the following
13 capabilities: LocalServices, Location, NetworkServices,
PowerMgmt, ProtServ, ReadDeviceData, ReadUserData,
SurroundingsDD, SwEvent, TrustedUI, UserEnvironment,
WriteDeviceData, WriteUserData.

Follow the online instructions. Within a few seconds, you should
be able to download the signed installable package.

4. Repeat the previous step for the mShell installation package.

5. Remove any self signed or DevCert signed version of m from the
device. The online signed version has different UIDs (0xe7e0cab8
and 0xe7e0cab7, from the UID test range), and cannot replace
production UID versions or coexist with them.

6.3 Open Signing with a DevCert

If you want to use m with certified capabilities on Symbian 3rd Edition
phones, the only way is currently to obtain an ACS publisher ID certificate
from a certificate issuer and your own developer certificate (‘‘DevCert’’)
from Symbian Signed. This allows you to sign the .sis files containing

m Mobile Shell Reference Version 3.00 69

https://www.symbiansigned.com/app/page/public/openSignedOnline.do
https://www.symbiansigned.com

6. m and Symbian Platform Security c© 2008 airbit AG

the binaries with certified capabilities. A developer certificate has the
following restrictions:

• It is bound to a set of specific IMEIs (currently up to 1000), i.e.
specific devices, specified when obtaining the certificate. This
means that the packages are not installable on other devices.

• Its validity is currently limited to 36 months.

6.3.1 Obtaining a DevCert

Step by step, a DevCert can be obtained as follows:

First, register yourself with an ACS publisher ID, and install the required
software:

1. Go to www.trustcenter.de/order/publisherid/dev and order your
ACS publisher ID certificate. The certificate is not free, it has to
be regularly renewed, and obtaining it requires verification of your
(our your company’s) identity by the issuer.

2. Go to www.symbiansigned.com and register yourself, with your
certified ID.

3. Download the DevCertRequest application from Symbian Signed,
and install it on a PC running Windows.

Then, for each DevCert, execute the following steps:

1. Make sure you know the IMEI of the phones you want to create
the certificate for.

2. Run the DevCertRequest application. The result will be two files,
a certificate request file (.csr suffix) and a private key file (.key
suffix), possibly encripted by a password you have chosen.

The application will tell you quite precisely what it needs.
When asked for the application capabilities, select them
all. The DevCert version of m requires at least the fol-
lowing 17 capabilities: CommDD, DiskAdmin, LocalServices,
Location, MultimediaDD, NetworkControl, NetworkServices,

70 m Mobile Shell Reference Version 3.00

http://www.trustcenter.de/order/publisherid/dev
http://www.symbiansigned.com

c© 2008 airbit AG 6.3. Open Signing with a DevCert

PowerMgmt, ProtServ, ReadDeviceData, ReadUserData,
SurroundingsDD, SwEvent, TrustedUI, UserEnvironment,
WriteDeviceData, WriteUserData.

3. Log in to www.symbiansigned.com, select ‘‘My Symbian Signed’’
and request a developer certificate. Upload the certificate request
generated before. After a few seconds, the actual certificate should
be ready for download from ‘‘My DevCerts’’. Download the file,
giving it a .cer or .cert suffix.

6.3.2 Signing m with the DevCert

To sign m with a developer certificate, you need the following:

1. The unsigned DevCert version of the m installation pack-
ages for your device, e.g. mEnvironment-S60-3rd-DC.sis and
mShell-S60-3rd-DC.sis.

2. The signsis.exe application. As this 1.2 MB application cannot
be distributed separately, you must download and install the entire
Symbian 3rd Edition C++ SDK for (e.g. from developer.nokia.com)
to get it.

3. Your developer certificate file, e.g. MyDevCert.cer.

4. Your private key file to autenticate the developer certificate, e.g.
MyDevCert.key, with password.

Then sign the unsigned installation packages by running the following
commands from the Windows command prompt1:

signsis -s mEnvironment-S60-3rd-DC.sis
mEnvironment-S60-3rd-MyDC.sis
MyDevCert.cer MyDevCert.key password

signsis -s mShell-S60-3rd-DC.sis mShell-S60-3rd-MyDC.sis
MyDevCert.cer MyDevCert.key password

mEnvironment-S60-3rd-MyDC.sis and mShell-S60-3rd-MyDC.sis

should now be installable on the phones specified in the developer
certificate.

1signsis will run without problems under Linux using wine.

m Mobile Shell Reference Version 3.00 71

http://www.symbiansigned.com
http://developer.nokia.com

6. m and Symbian Platform Security c© 2008 airbit AG

72 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG

A. Appendix

A.1 Exception Tags

This section lists the exceptions tags with their english error message.

Environment Exceptions

Environment exceptions are usually thrown by the underlying operation
system, e.g. when trying to access a file which does not exist.

• ErrAbort: Operation aborted.

• ErrAccessDenied: Access denied.

• ErrAlreadyExists: File already exists.

• ErrArgument: Invalid function argument.

• ErrBadHandle: Object handle is bad.

• ErrBadName: Name is bad.

• ErrCancel: Operation canceled.

• ErrCommsBreak: Break in communications occured.

• ErrCommsFrame:: Serial framing error.

• ErrCommsLineFail:: Serial line failed.

• ErrCommsOverrun:: Serial overrun error.

• ErrCommsParity:: Serial parity error.

• ErrCorrupt: File or database corrupted.

• ErrCouldNotConnect:: Could not connect.

• ErrCouldNotDisconnect:: Could not disconnect.

• ErrDied: Thread or process died.

m Mobile Shell Reference Version 3.00 73

A. Appendix c© 2008 airbit AG

• ErrDirFull: Directory is full.

• ErrDisconnected:: Link is disconnected.

• ErrDiskFull: Disk is full.

• ErrDivideByZero: Integer division by zero.

• ErrEof: Eof reached.

• ErrExtensionNotSupported: Extension function is not sup-
ported.

• ErrGeneral: General problem.

• ErrHardwareNotAvailable: Hardware is not available or not
enabled.

• ErrInUse: File or device is in use.

• ErrLocked: Object locked.

• ErrNoMemory: Out of memory. This exception cannot be catched.

• ErrNotFound: File or item not found.

• ErrNotReady: Device is not ready.

• ErrNotSupported: Operation not supported.

• ErrOverflow: Numeric overflow.

• ErrPathNotFound: Path not found.

• ErrPermissionDenied: Permission denied by platform security.

• ErrServerTerminated: Server has terminated.

• ErrServerBusy: Server is busy.

• ErrSessionClosed: Server session has been closed.

• ErrTimedOut:: Operation timed out.

• ErrTooBig:: Value or array too big.

• ErrTotalLossOfPrecision: Total loss of precision.

• ErrUnderflow: Numeric underflow.

• ErrWrite: Write failed.

• ExcNotPermitted: Operation not permitted by user.

74 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG A.1. Exception Tags

Programming Exceptions

Programming exceptions are thrown by m, and usually caused by an
error in your code or an unexpected user input.

• ExcArrayNotNumber: Operand is an array, not a number.

• ExcBooleanNotNumber: Operand is a boolean, not a number.

• ExcForwardFunction: Function is only forward declared.

• ExcFunctionNotNumber: Operand is a function, not a number.

• ExcIndexOutOfRange: Array index is out of range.

• ExcInterrupted: Interrupted function call.

• ExcInvalidIndexType: Array index is neither number nor string.

• ExcInvalidNumber: Wrong number format.

• ExcInvalidUTF8: Invalid UTF-8 character read.

• ExcModuleBusy: Module is busy with other function.

• ExcNativeNotNumber: Operand is native object, not a number.

• ExcNoSuchClass: Class not loaded.

• ExcNoSuchKey: No array element for key.

• ExcNotArray: Operand is not an array.

• ExcNotAvailable: Function or variable is unavailable.

• ExcNotBoolean: Operand is not a boolean.

• ExcNotComparable: Can only order two numbers or two strings.

• ExcNotFunction: Operand is not a function reference.

• ExcNotNative: Operand is not a native object.

• ExcNotNumber: Operand is not a number.

• ExcNotString: Operand is not a string.

• ExcNotSuchInstance: Not such instance.

• ExcNullNotNumber: Operand is null, not a number.

• ExcNullNotInstance: Operand is null, not an instance.

• ExcStringNotNumber: Operand is a string, not a number.

m Mobile Shell Reference Version 3.00 75

A. Appendix c© 2008 airbit AG

• ExcStringPosOutOfRange: String position is out of range.

• ExcTooManyGlobals: Too many global variables, split into mod-
ules.

• ExcUnknownField: Unknown field referenced by native function.

• ExcUnknownModule: Unknown module referenced by native func-
tion.

• ExcValueOutOfRange: Value or parameter is outside valid range.

• ExcWrongNative: Operand has wrong native object type.

• ExcWrongParamCount: Too many or too few function parameters.

Internal Error Exceptions

Internal error exceptions are thrown by m when it detects an internal
inconsistency. These exceptions cannot be catched, and are most likely
caused by a bug in m or in a native module.

• ErrDisabledFunction: Internal error: interpreting disabled func-
tion.

• ErrDuplicateModule: Internal error: duplicate module.

• ErrDuplicateNative: Internal error: duplicate native function.

• ErrEndOfCode: Internal error: falling through end of code.

• ErrInvalidDll: Internal error: DLL did not return module.

• ErrInvalidFrame: Internal error: invalid stack frame contents.

• ErrInvalidFunctionIndex: Loader error: invalid function index.

• ErrInvalidInstruction: Internal error: invalid instruction.

• ErrInvalidModuleIndex: Loader error: invalid module index.

• ErrInvalidStack: Internal error: invalid stack.

• ErrInvalidVariableIndex: Loader error: invalid variable index.

• ErrMissingDll: Internal error: module DLL is missing.

• ErrNativeFunction: Internal error: interpreting native function.

• ErrNoCode: Internal error: interpreting without code.

76 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG A.1. Exception Tags

• ErrNoNativeFunction: Internal error: no native function to add
option to.

• ErrNotInstance: Internal error: using non-instance as instance

• ErrRTVersionMismatch: Internal error: runtime version mis-
match. Get an up to date version of the runtime or native module.

• ErrStringExtension: Internal error: string extension.

m Mobile Shell Reference Version 3.00 77

A. Appendix c© 2008 airbit AG

A.2 Reserved words

In the m language, keywords, like identifiers, are case sensitive. The
following keywords are reserved and cannot be used as identifiers:
and const forward or true
as do function return try
break else if shl until
by elsif in shr use
case end is then while
catch false not throw
class for null to

A.3 Properties (.prp) File

Global behaviour of the m application is configured in the m properties.
Selecting View→Properties opens a dialog to edit the properties.

The properties are stored in an ASCII text file
system.appdir+"mShell.prp" containing key-value pairs. Each
pair is on a single line, the key and the value separated by an equal (=)
character.

The following keys are recognized by m:

• autogo=path1,path2,...

A comma separated list of scripts or executables to run when
starting m. In conjunction with onboot, these are run when the
phone is switched on.

• bgcolor=black|white|red|green|blue|yellow|cyan|

magenta|#rrggbb

The background color of console and editor. #rrggbb is a
HTML-like hexadecimal notation, e.g. #ff00ff for magenta.

• encodings=bom|utf-8|utf-16le|utf-16be|8-bit

The encoding to use for m source files and files loaded into
and saved from the m editor. This setting does not change the
behaviour of the I/O streams of module io (Library, p. 36).
If set to bom, files read are expected to carry an initial Byte Order
Mark (BOM, character 0xfeff) determining their encoding; files

78 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG A.3. Properties (.prp) File

without BOM are treated as sequences of 8-bit characters. In this
mode, files are saved in UTF-8 with initial BOM.
If set to utf-8, files are read and saved in UTF-8. No BOM is
expected or written.
If set to utf-16le, files are read and saved in UTF-16 Little Endian.
No BOM is expected or written.
If set to utf-16be, files are read and saved in UTF-16 Big Endian.
No BOM is expected or written.
If set to 8-bit, files are read and saved considering only the lower
eight bits of all characters. No BOM is expected or written.

• fgcolor=black|white|red|green|blue|yellow|cyan|

magenta|#rrggbb

The foreground (text) color of console and editor.

• keep=true|yes|y|1 | false|no|n|0 | busy

If set to true, yes, y or 1, the m application cannot be exited
automatically by the system, e.g. if it is running low on memory, or
if m is to be removed because it is updated by a new installation.
If set to busy, exiting is prevented if there are processes running or
waiting for input.
For all other values, m behaves like any other ‘‘well behaving’’
application, i.e. it can be exited at any time if the operating system
requests it.

• mfont=typeface,points,bold,italic

The font to use in the m console and editor. A leading star (*)
on the typeface is ignored. points (integer), bold (boolean) and
italic (boolean) are optional. See also ui.mfont (Library, p. 92).

• onboot=true|yes|y|1 | false|no|n|0 | once | restart

If set to true, yes, y or 1, the m application will be started
automatically when the phone is booted up, i.e. switched on.
If set to once, m is only started at the next bootup, as the entry is
automatically set to n afterwards. This is the recommended setting
for disaster prevention during script testing.
If set to restart, m is started automatically when the phone is
booted up, and restarted each time about 20 seconds after it exits
(orderly or because of a crash).

m Mobile Shell Reference Version 3.00 79

A. Appendix c© 2008 airbit AG

This feature requires the m Supervisor & Viewer application to be
installed.

• outsize=charcount

The maximum number of characters in the console output, before
truncating at the beginning. Truncation happens in chunks of
about 500 characters. Set to 0 for an unlimited output size.
Handling large output output sizes slows m down.

• perms=permissions

The permission bits, defining the permissions granted to m scripts.
See section A.4 (p. 82).

• smsctrl=true|yes|y|1 | false|no|n|0

If set to true, yes, y or 1, the m application can be controlled via
SMS commands, even if it is not running. See chapter 5 (p. 65).
This feature requires the m Supervisor & Viewer application to be
installed.

• smskey=keyword

Any SMS containing keyword as the first characters (ignoring case)
is considered a command and sent to the m application.

• smsnr=suffix

The last digits of the sender phone number which can control the
m application via SMS. If empty, anybody knowing smskey can
control m.

• _filename=pos

The last position of the cursor when editing file filename.

All other keys are silently ignored. This can be used to disable entries by
just putting e.g. a hash mark in front of them.

A sample properties file might look as follows:

80 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG A.3. Properties (.prp) File

autogo=c:\documents\mShell\TrackMe.m,e:\PhoneMonitor.mex
keep=busy
mfont=Monospace,14,false,false
onboot=once
fgcolor=#008000
bgcolor=white
outsize=10000
encoding=utf-8
perms=159
smsctrl=yes
smsnr=4561234
smskey=mshell
_C:\documents\mShell\SmsService.m=133

m Mobile Shell Reference Version 3.00 81

A. Appendix c© 2008 airbit AG

A.4 User Permissions

Permission for certain operations can be granted and denied by
the user. Any operation with insufficient permissions will throw
ExcNotPermitted. Selecting View→Permissions opens a dialog to
edit the permissions.

The individual permissions are:
Name Bit Meaning
ReadDoc 1 Read access to files in system.docdir and its

subdirectories.
WriteDoc 2 Write access to files in system.docdir and its

subdirectories.
ReadApp 4 Read access to other application’s data.
WriteApp 8 Write access to other application’s data.
FreeComm 16 Access to free communication resources (receiving

messages, Bluetooth).
ReadAll 32 Read access to all files.
WriteAll 64 Write access to all files. Granting write access

to all files also allows modifying the permis-
sions.

CostComm 128 Access to chargeable communication resources
(sending messages, TCP/IP).

Thus, if a function requires Read(file) , then

• If file denotes a file or directory in system.docdir or one of its
subdirectories, the ReadDoc permission must be granted for the
function to succeed.

• If file denotes a file or directory outside system.docdir or one
of its subdirectories, the ReadAll permission must be granted for
the function to succeed.

Likewise, if a function requires Write(file) , the WriteDoc or
WriteAll permissions must be granted.

82 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG Index

Index
.., 39

.Instance, 51

.mex, 61

.prp file, 78

.sis, 61

.svg, 61

;, 20

8-bit, 79

abstract class, 49

Application Name, 63

Array, 6

array

associate, 12

indexing, 12

key, 12

literal, 12

arrays, 11

assignment, 21

autoexec.m, 55--57

base class, 51

basic capabilities, 67

bom, 78

Boolean, 6

boolean

literal, 9

break, 29

capabilities, 67

Capability Set, 64

Caption, 63

case, 28

class, 43

class fields, 11, 46

accessing, 46

class functions, 47

calling, 47

class instance, 6, 43

clone, 33

comments, 7

concatenation, 17

const, 22

constant, 22

constructor, 43

constructor function, 50

CostComm, 82

cp function (autoexec.m), 57

data types, 5

del function (autoexec.m), 57

delegates, 43, 52

Description, 63

destructor function, 51

DevCert, 69, 70

developer certificate, 69

dir function (autoexec.m), 58

do, 25

Don’t sign sis file, 64

m Mobile Shell Reference Version 3.00 83

Index c© 2008 airbit AG

double dot, 38, 39

edit function (autoexec.m), 58

ErrAbort, 73

ErrAccessDenied, 73

ErrAlreadyExists, 73

ErrArgument, 73

ErrBadHandle, 73

ErrBadName, 73

ErrCancel, 73

ErrCommsBreak, 73

ErrCommsFrame:, 73

ErrCommsLineFail:, 73

ErrCommsOverrun:, 73

ErrCommsParity:, 73

ErrCorrupt, 73

ErrCouldNotConnect:, 73

ErrCouldNotDisconnect:, 73

ErrDied, 73

ErrDirFull, 74

ErrDisabledFunction, 76

ErrDisconnected:, 74

ErrDiskFull, 74

ErrDivideByZero, 74

ErrDuplicateModule, 76

ErrDuplicateNative, 76

ErrEndOfCode, 76

ErrEof, 74

ErrExtensionNotSupported, 74

ErrGeneral, 74

ErrHardwareNotAvailable, 74

ErrInUse, 74

ErrInvalidDll, 76

ErrInvalidFrame, 76

ErrInvalidFunctionIndex, 76

ErrInvalidInstruction, 76

ErrInvalidModuleIndex, 76

ErrInvalidStack, 76

ErrInvalidVariableIndex, 76

ErrLocked, 74

ErrMissingDll, 76

ErrNativeFunction, 76

ErrNoCode, 76

ErrNoMemory, 74

ErrNoNativeFunction, 77

ErrNotAvailable, 40, 41

ErrNotFound, 74

ErrNotInstance, 77

ErrNotReady, 74

ErrNotSupported, 74

ErrOverflow, 74

ErrPathNotFound, 74

ErrPermissionDenied, 67, 74

ErrRTVersionMismatch, 77

ErrServerBusy, 74

ErrServerTerminated, 74

ErrSessionClosed, 74

ErrStringExtension, 77

ErrTimedOut:, 74

ErrTooBig:, 74

ErrTotalLossOfPrecision, 74

ErrUnderflow, 74

ErrWrite, 74

ExcArrayNotNumber, 75

ExcBooleanNotNumber, 75

84 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG Index

ExcDivideByZero, 15

exceptions, 41

catching, 42

environment, 73

internal, 76

programming, 75

tags, 73

throwing, 42

ExcForwardFunction, 75

ExcFunctionNotNumber, 75

ExcIndexOutOfRange, 12, 42, 75

ExcInterrupted, 75

ExcInvalidIndexType, 75

ExcInvalidNumber, 75

ExcInvalidUTF8, 75

ExcModuleBusy, 75

ExcNativeNotNumber, 75

ExcNoSuchClass, 75

ExcNoSuchKey, 75

ExcNotArray, 75

ExcNotAvailable, 75

ExcNotBoolean, 24, 25, 75

ExcNotComparable, 17, 75

ExcNotFunction, 75

ExcNotNative, 75

ExcNotNumber, 75

ExcNotPermitted, 67, 74, 82

ExcNotString, 75

ExcNotSuchInstance, 45--47, 75

ExcNullNotInstance, 75

ExcNullNotNumber, 75

ExcStringNotNumber, 75

ExcStringPosOutOfRange, 76

ExcTooManyGlobals, 76

ExcUnknownField, 76

ExcUnknownModule, 76

ExcValueOutOfRange, 76

ExcWrongNative, 76

ExcWrongParamCount, 76

exit function (autoexec.m), 58

expressions, 14

for, 25

forward, 35, 44

FreeComm, 82

function

forward, 35

literal, 10

recursive, 11, 33

result, 32

function parameter, 11, 32

function reference, 6, 31, 36

functions, 32

global variables, 11

hexadecimal, 8

if, 23

Include m Environment, 63

increment, 23

init, 50

instance

function reference, 43, 52

instance function reference, 6

m Mobile Shell Reference Version 3.00 85

Index c© 2008 airbit AG

keywords, 78

literals, 7

local variables, 11

Location capability, 68

md function (autoexec.m), 58

methods, 43

MEX file, 61

module

alias, 38

initialization, 37

optional, 40

prefix, 39

version, 40, 41

modules, 37

mv function (autoexec.m), 59

native object, 6

null, 6

literal, 10

Number, 6

number

hexadecimal, 8

literal, 8

numbers

precision, 6

range, 6

object oriented programming, 6, 43

OOP, 6, 43

open signing

DevCert, 69

online, 68

operands, 14

operator

arithmetic, 15

bitwise, 16

boolean, 19

class instance test, 18

comparison, 17

concatenation, 17

precedence, 14

optional parameters, 34

parameter

function, 11

optional, 34

parameters, 32

permissions, 82

Platform, 63

platform security, 67

Polymorphism, 43

precedence, 14

print, 30

properties file, 78

rd function (autoexec.m), 59

ReadAll, 82

ReadApp, 82

ReadDoc, 82

recursive function, 11

ren function (autoexec.m), 59

reserved words, 78

return, 30, 32

run function (autoexec.m), 59

semicolon, 20

86 m Mobile Shell Reference Version 3.00

c© 2008 airbit AG Index

send function (autoexec.m), 59

shell, 55

signing, 67

Single inheritance, 43

SIS file, 61

SMS control, 65

Standalone application, 61

statement list, 20

statements, 20

String, 6

string

literal, 8

subclass, 49

super, 49

superclass, 49

SVG file, 61

syntax

EBNF, 5

interactive, 55

this, 47

try

module, 40

prefix, 40

type function (autoexec.m), 60

UID, 63, 69

UID test range, 69

until, 25

use, 37, 53

utf-16be, 79

utf-16le, 79

utf-8, 79

variable, 10

class field, 11

global, 11

local, 11

Vendor, 64

Version, 63

while, 24

WriteAll, 82

WriteApp, 82

WriteDoc, 82

m Mobile Shell Reference Version 3.00 87

	Introduction
	Language
	Data Types
	Comments
	Literals
	Variables
	Arrays
	Expressions
	Statements
	Assignments
	Increment
	If Statement
	While Statement
	Do-Until Statement
	For Statement
	Case Statement
	Break Statement
	Return Statement
	print Statement

	Functions
	Modules
	Exceptions
	Object Oriented Programming
	Source Structure

	Interactive Shells
	Simplified Syntax for Interactive Use
	Shell Builtin Functions
	.cp
	.del
	.dir
	.edit
	.exit
	.md
	.mv
	.rd
	.ren
	.run
	.send
	.type

	Producing Standalone Applications
	Input Files
	Settings

	SMS Control
	m and Symbian Platform Security
	Capabilities
	Open Signing Online
	Open Signing with a DevCert
	Obtaining a DevCert
	Signing m with the DevCert

	Appendix
	Exception Tags
	Reserved words
	Properties (.prp) File
	User Permissions

	Index

