
Reference
Version 2.01

m Mobile Shell, Reference, Version 2.01
Written by Lukas Knecht

www.m-shell.net

Document IW-M-REF-1.34

c© 2004-2007 infowing AG, 8703 Erlenbach, Switzerland

The information contained herein is the property of infowing AG and shall neither be reproduced
in whole or in part without prior written approval from infowing AG. All rights are reserved,
whether the whole or part of the material is concerned, specifically those of translation, reprint-
ing, reuse of illustration, broadcasting, reproduction by photocopying machine or similar means
and storage in data banks. infowing AG reserves the right to make changes, without notice, to the
contents contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the material as presented.

Typeset in Switzerland.

c© 2007 infowing AG Contents

Contents

1 Introduction 3

2 Language 5
2.1 Data Types . 5
2.2 Comments . 6
2.3 Literals . 7
2.4 Variables . 10
2.5 Arrays . 11
2.6 Expressions . 13
2.7 Statements . 18

2.7.1 Assignment . 19
2.7.2 Increment . 20
2.7.3 If Statement . 21
2.7.4 While Statement 22
2.7.5 Do-Until Statement 23
2.7.6 For Statement . 23
2.7.7 Case Statement . 25
2.7.8 Break Statement 27
2.7.9 Return Statement 27
2.7.10 print Statement . 27

2.8 Functions . 29
2.9 Modules . 34
2.10 Exceptions . 38
2.11 Source Structure . 40

m Mobile Shell Reference Version 2.01 1

Contents c© 2007 infowing AG

3 Interactive Shells 41
3.1 Simplified Syntax for Interactive Use 41
3.2 Shell Builtin Functions . 42

4 SMS Control 47

5 m and Symbian Platform Security 49
5.1 Capabilities . 49
5.2 Signing with a Developer Certificate 50

5.2.1 Obtaining a DevCert 51
5.2.2 Signing m with the DevCert 52

A Appendix 53
A.1 Exception Tags . 53
A.2 Reserved words . 57
A.3 Properties (.prp) File . 57
A.4 User Permissions . 61

Index 63

2 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG

1. Introduction
m is a simple and easy to learn programming language intended for mobile
phones (“Smart Phones”). m has been specifically designed for the limited
text editing capabilities of these devices. The language thus has few special
characters, and the library functions generally use short identifiers.
To obtain a flat learning curve, in particular for the novice user, and to keep
editing m code manageable on a cell phone, the m language has been kept
simple, while still providing a rich set of programming constructs and func-
tions.
Likewise, the library of modules closely reflects the capabilities of smart
phones. Modules have been designed with ease of use in mind, without re-
quiring complex setup operations or even an understanding of the underlying
architecture. The module library is described in the “Library” manual, which
complements this reference manual.
To protect the phone’s data, the user’s purse, and the phone’s integrity from
malevolent scripts, permissions to use potentially dangerous functions are
configurable.

m Mobile Shell Reference Version 2.01 3

1. Introduction c© 2007 infowing AG

4 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG

2. Language
This chapter defines the m programming language. m is a procedural lan-
guage supporting code reuse through a simple concept of modules.
The following sections introduce the building blocks of m. After each sec-
tion, the m syntax is summarized by a formal definition in EBNF (Extended
Backus Naur Form):

• Text in single quotes ’’ corresponds to the actual text (terminal sym-
bols).

• Text in bold face denotes keywords (reserved words).

• The vertical bar | separates alternatives.

• Text in brackets [] is optional.

• Text in curly braces {} can be repeated (zero times, once or many
times).

• Text in parentheses () is grouped together.

m scripts are read as a series of tokens which are separated by “separator”
characters (all characters which are not letters, digits or an underscore). White
space (blank and new line) always separates two characters. The amount of
white space used does not affect the meaning of a script, but white space
should be added sensibly to make a script more readable by indenting lines to
reflect the structure of the code.

2.1 Data Types

m supports the following data types:

m Mobile Shell Reference Version 2.01 5

http://en.wikipedia.org/wiki/Extended_Backus-Naur_form

2. Language c© 2007 infowing AG

• Number: numbers have a range of roughly −10308 to 10308 and have a
precision of almost 17 decimal digits1.

• String: strings are sequences of characters2. Strings are immutable:
their length is fixed, and individual characters cannot be changed. How-
ever, there are many builtin functions (see builtin functions (Library,
p. 7)) manipulating strings.

• Boolean: booleans are logical values, i.e. either true or false. For
instance, the result of a comparison is of Boolean type. Booleans are
also often used as flags or to denote options for functions.

• Array: arrays are collections of arbitrarily many values. Multidimen-
sional arrays (e.g. matrices) are constructed as arrays of arrays. In m,
arrays are dynamic in size. Elements can be appended or removed. El-
ements can be indexed by numbers or strings (“associative array”). See
also section 2.5 (p. 11).

• Function Reference: a reference (“pointer”) to a function. The ref-
erence can be used to specify callback functions, or to implement a
simple polymorphism scheme.

• Null: this special type denotes an uninitialized or unspecified value.
The only value of this type is null.

• Native Objects: are created by modules which are tied closely into the
underlying operating system, e.g. by module io (Library, p. 35). Native
objects can only be assigned and compared for identity.

2.2 Comments

Normally, all characters in an m script are assumed to be m language. Com-
ments intended for the human reader must therefore be specially marked:

• Single line comments start with a double slash: any text from a // to
the end of the line containing it is considered a comment.

1Internally, numbers are stored as 64 bit floating point values in IEEE format, with 52+1 bit
mantissa and 11 bit exponent.

2Internally, each character is represented by 16 bits, thus supporting the UNICODE R© basic
multilingual plane. However, fonts often support only the ISO-8859-1 (Latin) character set.

6 m Mobile Shell Reference Version 2.01

http://www.unicode.org

c© 2007 infowing AG 2.3. Literals

• Multiline comments start with slash-star and end with star-slash: any
text between /* and */ is considered a comment and ignored. These
comments can be nested.

print 3*3 // this prints nine
→ 9
/* The following m code is within this comment,

so it is ignored:
print 5/7

This is still part of the comment.
/* This is a nested comment ending here: */
This is the last line of this comment. */

print 3/4
→ 0.75

Comment marks cannot be placed within string literals (see section 2.3 (p. 7)).

2.3 Literals

Literals are concrete values specified explicitly in the code. Except for ar-
ray literals, they are fixed and cannot change during script execution. Array
literals are more complex and discussed in section 2.5 (p. 11).

SimpleLiteral := NumberLiteral | StringLiteral | BooleanLiteral |
FunctionLiteral | NullLiteral .

Number Literals

A number literal is a sequence of digits, with an optional decimal point, and
an optional decimal exponent. The digits must not be separated by white
space or thousands separators:

m Mobile Shell Reference Version 2.01 7

2. Language c© 2007 infowing AG

print 0
→ 0
print 3.1415927
→ 3.1415927
print 6.02214199e+23
→ 6.022142E+23
print 1E-3
→ 0.001

Integer numbers can also be written in hexadecimal notation, by prefixing
them with 0x:

print 0xff
→ 255
print 0x1000
→ 4096

NumberLiteral :=
Digit {Digit} [’.’ {Digit}]
[(E’ | ’e’) [’-’ | ’+’] Digit {Digit}] |

’0x’ HexDigit {HexDigit} .
Digit :=
’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ .

HexDigit := Digit | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ |
’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ .

String Literals

A string literal is a sequence of characters between single or double quotes.

print ’Hello, world!’
→ Hello, world!
print "That’s nice"
→ That’s nice

In order to produce all characters, the backslash \ serves as escape for the
following character. For instance, if the quote used to delimit the string literal
occurs inside the string, it must be escaped. Likewise, the backslash itself
must be escaped, as is often seen in path names:

8 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.3. Literals

print "A quote: \"To be, or not to be...\""
→ A quote: "To be, or not to be..."
print ’That\’s nice’
→ That’s nice
print "c:\\system\\apps"
→ c:\system\apps

There are a few characters which have a special meaning when escaped:
\f form feed (ASCII 12)
\n new line or line feed (ASCII 10)
\r carriage return (ASCII 13)
\t horizontal tab (ASCII 9)
\u hexadecimal UNICODE R© follows

print "Line1\nLine2"
→ Line1

Line2
print "Item1\tItem2"
→ Item1 Item2
print "g\u00e9nial"
→ génial

The maximum length of a string literal is 256 characters.

StringLiteral := ’"’ {Char | EscapeChar | "’"} ’"’ |
"’" {Char | EscapeChar | ’"’} "’" .

Char := (printable ISO-8859-1 char except ’, ", \)
EscapeChar := ’\’ (’n’ | ’r’ | ’t’ |
’u’ HexDigit HexDigit HexDigit HexDigit | (printable char)) .

Boolean Literals

Not surprisingly, there are just two boolean literals: true and false.

BooleanLiteral := false | true .

Function Literals

A function literal is a reference to a (already defined) function. Section 2.8
(p. 33) explains function references.

m Mobile Shell Reference Version 2.01 9

http://www.unicode.org

2. Language c© 2007 infowing AG

FunctionLiteral := ’&’ [ModulePrefix] Identifier .

Null Literal

The null literal denotes a “special” value which is different from all other
values.

NullLiteral := null .

2.4 Variables

A variable is a storage location identified by a name. Values can be assigned
to (stored in) the variable, and the value can later be retrieved by the same
name.
Variable (and function) identifiers are sequences of ordinary latin letters, dig-
its, and the underscore character.

• Identifiers must not start with a digit.

• Identifiers are case sensitive, i.e. lowercase and uppercase variants are
different.

• Keywords (see appendix A.2 (p. 57)) cannot be used as identifiers.

• The maximum length of an identifier is 64 characters.

Examples for valid identifiers:

a
Z
AvogadroConstant
avogadro_constant
_4
x1

Examples for invalid identifiers:

9a // starts with a digit
end // is a keyword
This_identifier_is_too_long_to_be_accepted_as_it_is_over_64_chars

10 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.5. Arrays

IdentifierChar := ’A’ to ’Z’ | ’a’ to ’z’ | ’_’ .
Identifier := IdentifierChar {IdentifierChar | Digit} .

There are two different kinds of variables:

• Global variables belong to a module (see section 2.9 (p. 34)) and exist
as long as the process containing the module exists. Global variables
can only be created within the module declaring them.

• Local variables belong to a function (see section 2.8 (p. 29)) and can
only be referenced within their function. They are different from global
variables with the same name, and exist as long as the function exe-
cutes: they are created when the function is called, and are destroyed
when the function returns. Hence, each invocation of a recursive func-
tion creates its own set of local variables. Function parameters are also
local variables .

See section 2.9 (p. 34) for examples and an explanation of module prefixes.

ModulePrefix := [ModuleName | ’.’] ’.’ .
Variable := [ModulePrefix] Identifier .
ModuleName := Identifier .

2.5 Arrays

Arrays are collections of values. The array values can be of different type,
and they can themselves again be arrays. The individual array elements are
accessed by indexing with integer numbers, starting at 0 for the first element.
Indexing requires putting the index value between brackets [], following the
array variable.
Trying to access an element with a negative or too large index throws
ExcIndexOutOfRange. Function .len (Library, p. 14) returns the number
of elements in the array.
Arrays are created by array literals, or by functions in module array (Library,
p. 19). An array literal is a comma-separated sequence of element values
between brackets:

m Mobile Shell Reference Version 2.01 11

2. Language c© 2007 infowing AG

a=["One", "Two", "Three"];
print a[0] // first element
→ One
print a[2] // third element
→ Three
print len(a)
→ 3
print a[3] // there is no fourth element
→ ExcIndexOutOfRange thrown

Arrays in m are completely dynamic, i.e. they can grow and shrink in size.
Function .append (Library, p. 7) appends elements to an array:

append(a, "Four", "Five");
print a
→ [One,Two,Three,Four,Five]

Associative Arrays

Array values can also be indexed by strings (“keys”), making the arrays “as-
sociative” and facilitating many programming tasks. Setting or getting an
array element via a string key is a fast operation3. Normally, keys are case
sensitive, but array.new (Library, p. 24) can also create arrays using case
folded keys.
Unlike indexing with numbers, indexing with strings for nonexisting index
values does not throw an exception:

• Getting an element for a nonexisting key returns null.

• Setting an element for a nonexisting key appends the element to the
array.

Arrays with string keys can still be indexed using integer values.
In array literals, preceding an element value with a key and a colon adds the
corresponding key:

3Internally, keys are organized into a dynamic hash table.

12 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.6. Expressions

h=["Joe":150, "Jack":165, "William":180, "Averell":195];
print h["Jack"]
→ 165
print h["Lucky Luke"] // element does not exist
→ null
h["Lucky Luke"]=185; // element is appended
print h
→ [150,165,180,195,185]
print h[2]
→ 180

See also: .append (Library, p. 7), .keys (Library, p. 14), module array

(Library, p. 19).

Literal := SimpleLiteral | ArrayLiteral .
ArrayKey := Expression .
ArrayValue := Expression .
ArrayElement := [ArrayKey ’:’] ArrayValue .
ArrayLiteral := ’[’ [ArrayElement {’,’ ArrayElement}] ’]’ .
Designator := Variable { ’[’ Expression ’]’ } .

2.6 Expressions

Generally speaking, expressions define (arithmetic, bitwise, comparison, or
logical) operations on (variable, literal, or function result) operands.

Operands

In m, there are four types of operands:

• Designators: the operand is the value of a variable or array element,
e.g. count, list[i].

• Function Calls: the operand is the result of a function call, e.g.
io.read(f, 10), math.sin(x). Functions are explained in section
2.8 (p. 29).

• Literals: the operand is a literal, i.e. an explicit value, e.g. 42, "Hello".

• Expression: the operand is an expression in parentheses, e.g. (7.2*x),
(not exists[key]).

m Mobile Shell Reference Version 2.01 13

2. Language c© 2007 infowing AG

Operation Precedence

Each operation has a precedence defining the order in which operations are
executed: as a general rule, arithmetic and bitwise operations are executed
before comparisons, and comparisons are executed before boolean opera-
tions. Within each group, multiplicative operations have higher precedence
than additive ones. Operations of equal precedence are executed from left
to right. The order of execution can be changed by grouping subexpressions
into parentheses.

t=3; s=7; m="aha";
print t + 5*s - 2/4 // multiplicative before additive
→ 37.5
print s&4 > t|4 // bitwise before comparison
→ false
print 13>s or m>"b" // comparison before boolean ops
→ true
print (20+t)*(s-24) // parentheses change the order
→ -391

Arithmetic Operators

The arithmetic operators are (P is the precedence):
Op P Description
x+y 4 Addition.
x-y 4 Subtraction.
x*y 5 Multiplication.
x/y 5 Division.
x%y 5 Integer remainder: x - y*trunc(x/y); if y=0, throws

ExcDivideByZero.
-x 6 Change sign of x.

14 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.6. Expressions

print 22 / 7
→ 3.142857149
print 97 % 11
→ 9
print 97 % -11
→ 9
print -97 % 11
→ -9

Except for %, these operations never throw an exception if an invalid operation
is attempted or overflow or underflow occurs. Instead, the result becomes
(negative or positive) infinity, or zero:

x=1e200;
print x*x
→ Inf
print -2/0
→ -Inf
print 1/x/x
→ 0

Bitwise Operators

Bitwise operators work on integer numbers, treating them like binary num-
bers of 32 bits. Such operations are typically used to represent sets of binary
states (e.g. flags) in a single value, or for hardware related operations.
The bitwise operators are (P is the precedence):

Op P Description
x|y 4 Bitwise or.
xˆy 4 Bitwise exclusive or.
x&y 5 Bitwise and.
x shl y 5 Bitwise shift left.
x shr y 5 Bitwise shift right.
˜x 6 Bitwise not.

m Mobile Shell Reference Version 2.01 15

2. Language c© 2007 infowing AG

print 1|2|4|8
→ 15
print 10&(2|4)
→ 2
print 14ˆ11
→ 5
print ˜(14&11) & (14|11) // ˜(a&b) & (a|b) = aˆb
→ 5
print 13 shl 4 // 13*16
→ 208
print 341 shr 2 // trunc(341 / 4)
→ 85
print ˜0
→ -1

Concatenation Operator

The concatenation operator concatenates two strings or a string with the string
representation of another value (P is the precedence):

Op P Description
x + y 4 Concatenation: x followed by y.

Note that if neither of the two operands is a string, the two operands are
assumed to be numbers and added.

print "One" + "Two"
→ OneTwo
print "x=" + 3/4
→ x=0.75

Comparison Operators

Comparing two operands always produces a boolean value. Testing for equal-
ity and inequality works for all pairs of operands. Operands of different types
(e.g. a number and a string) are never equal.
Only numbers and strings can be ordered, i.e. compared for less or greater
than. Strings are ordered by their UNICODE R© character values, which orders
uppercase before lowercase, and does not produce a general lexical ordering.

16 m Mobile Shell Reference Version 2.01

http://www.unicode.org

c© 2007 infowing AG 2.6. Expressions

Use .collate (Library, p. 9) to lexically compare strings.
Trying to order operands other than numbers or strings throws
ExcNotComparable.
Two arrays are only equal if they are the same array. .equal (Library, p. 10)
compares two arrays element by element.
null is only equal to itself.
The comparison operators are (P is the precedence):

Op P Description
x = y 3 true if x is equal to y.
x # y 3 true if x is not equal to y.
x <> y 3 The same as x # y.
x < y 3 true if x is less than y.
x <= y 3 true if x is less than or equal to y.
x > y 3 true if x is greater than y.
x >= y 3 true if x is greater than or equal to y.

print 7>5
→ true
print "o" + "ne" = "one"
→ true
print "two" < "three"
→ false
print "Two" < "three" // no lexical ordering
→ true
print 14 = "a"
→ false
print 13 # "b"
→ true
print 13 < "14"
→ ExcNotComparable thrown

Boolean Operators

The boolean operators are (P is the precedence):

m Mobile Shell Reference Version 2.01 17

2. Language c© 2007 infowing AG

Op P Description
x or y 1 Logical or: true if either x or y is true, false if both

x and y are false.
x and y 2 Logical and: true if both x and y is true, false if

either x or y are false.
not x 6 Logical not: true if x is false, false if x is true.

print false or false, false or true, true or false,
true or true

→ false true true true
print false and false, false and true, true and false,
true and true

→ false false false true
print not false, not true
→ true false

The second operand is only evaluated if the first operand doesn’t already de-
termine the result. This is often useful when doing combined checks, as it
avoids evaluation of invalid expressions:

ok=m#0 and 17%m = 3 // deadly 17%0 is never evaluated

Expression := Predicate {or Predicate} .
Predicate := Comparison {and Comparison} .
Comparison :=
Sum [(’=’ | ’<>’ | ’#’ | ’<’ | ’>’ | ’<=’ | ’>=’) Sum] .

Sum := Product {(’+’ | ’-’ | ’|’ | ’ˆ’) Product} .
Product := Factor {(’*’ | ’/’ | ’%’ | ’&’ | shl | shr) Factor} .
Factor := [’-’ | ’˜’ | not]
(Designator | FunctionCall | Literal | ’(’ Expression ’)’).

2.7 Statements

Statements are the smallest unit of execution in m. Statements change values
of variables, call functions and control the flow of execution. Most of the
time, several statements are executed in a sequence, one after the other.
A sequence of statements is called a statement list. Within a statement list,
statements must be separated by a semicolon. This is the only place where m
requires a semicolon. In particular, there is no need to put a semicolon at the

18 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.7. Statements

end of each statement4. However, ending or preceding each statement with a
semicolon is not an error, it just produces empty statements which are ignored
during execution.
For instance, the following two code fragments are completely equivalent:

use math;
function f(x);
return x*x*math.exp(x/40);

end;
for x=0 to 10 by 0.1 do;
y=f(x);
print x,y;

end;

use math
function f(x)
return x*x*math.exp(x/40)

end
for x=0 to 10 by 0.1 do
y=f(x); // this is the only required semicolon
print x,y

end

Statement := |
Assignment | ConstAssignment | Increment | Expression |
IfStatement | WhileStatement | DoStatement | ForStatement |
BreakStatement | ReturnStatement | ThrowStatement |
TryStatement | PrintStatement .

StatementList = Statement { ’;’ Statement } .

2.7.1 Assignment

This statement type assigns the value of an expression to a variable or array
element. It also defines the variable if it didn’t occur in the preceding code
yet. A variable can be reassigned as often as required, also with values of
different types (although this is generally not considered good programming
practice).

4This minimalistic approach was chosen to reduce the number of control characters required
for a valid m script.

m Mobile Shell Reference Version 2.01 19

2. Language c© 2007 infowing AG

x = 28*3;
x = ["a", "b", "c"];
x[1] = "b2";
x[2] = null;
x["new"] = "d";
print x
→ [a,b,null,d]

When assigning an array, the array is not copied: the expression and the vari-
able or array element it is assigned to will denote the same array:

ma = ["Ma", "Dalton"];
joe = ma; // joe and ma refer to the same array
joe[0] = ["Joe"]; // this also modified ma
print ma
→ [Joe,Dalton]

array.copy (Library, p. 20) copies an array element by element.
If a variable is being defined, i.e. didn’t occur in the preceding code, it can be
marked as constant by prefixing the assignment with const. Array elements
cannot be marked constant: a constant array can be modified after it has been
assigned to another variable.

const C = 2.997e8;
C = 4; // illegal
const A = [1, 2, 3];
A[1] = 7; // illegal
b = A;
b[1] = 7; // perfectly legal, also modifies A[1]
print A
→ [1,7,3]

Assignment := Designator ’=’ Expression .
ConstAssignment := const Variable ’=’ Expression .

2.7.2 Increment

This statement type increments or decrements a numeric variable by a nu-
meric expression (+=, -=), or simply by one (++, --). These statements are

20 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.7. Statements

just shorthand notations for full assignments5:
Increment Equivalent Assignment
x += expr x = x + expr

x -= expr x = x - expr

x++ x = x + 1

x-- x = x - 1

s=7;
s+=13;
s--;
print s
→ 19

Increment := Designator
(’+=’ Expression | ’-=’ Expression | ’++’ | ’--’) .

2.7.3 If Statement

An if statement executes some code depending on the value of boolean
expressions (e.g. comparisons). Its simplest form executes statements (the
print in the example) if a condition (a > 13) evaluates to true:

a=15;
if a > 13 then
print a + " is greater than 13"

end
→ 15 is greater than 13

An optional else block may contain statements which are executed if the
condition evaluates to false:

a=9;
if a > 13 then
print a + " is greater than 13"

else
print a + " is less than 13"

end
→ 9 is less than 13

5They are not completely equivalent: in s[f(x)]+=3, f(x) is evaluated only once,
whereas in s[f(x)]=s[f(x)]+3, f(x) is evaluated twice.

m Mobile Shell Reference Version 2.01 21

2. Language c© 2007 infowing AG

To test for more than just two alternatives, an arbitrary number of elsif
blocks can be added. These must occur after the if/then and before the
(optional) else block:

a=13;
if a > 14 then
print a + " is greater than 14"

elsif a < 13 then
print a + " is less than 13"

elsif a = 13 then
print a + " is equal to 13"

else
print a + " must be 14"

end
→ 13 is equal to 13

If any of the conditions evaluates to true, the remaining conditions are not
evaluated.
Throws ExcNotBoolean if any of the evaluated conditions is not boolean.

IfStatement := if Expression then StatementList
{elsif Expression then StatementList}
[else StatementList]
end .

2.7.4 While Statement

The while statement repeats some code as long as a condition evaluates to
true. The condition is tested before each repetition.

a=[430, 241, 187, 53, -1, 17]; s=0;
while i<len(a) and a[i]>=0 do
s += a[i]; i++

end;
print i, s
→ 4 911

Throws ExcNotBoolean if the condition is not boolean.

WhileStatement := while Expression do StatementList end .

22 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.7. Statements

2.7.5 Do-Until Statement

The do statement repeats some code until a condition evaluates to true. The
condition is tested after each repetition.

x=2; y=x;
do
y0=y; y=(y+x/y)/2

until y>=y0;
print y, y*y
→ 1.4142135624 2

Throws ExcNotBoolean if the condition is not boolean.

DoStatement := do StatementList until Expression .

2.7.6 For Statement

The for statement lets an index variable iterate through a range of numbers or
through the elements of an array, and executes some code for each value. The
index variable must be a simple variable, either local in the current function
or global in the current module. It cannot be an array element or a variable in
another module.

• The for loop iterating through a range of numbers looks as follows:

for index=StartExpr to EndExpr [by IncrExpr] do
statements

end

The range is defined by StartExpr and EndExpr, and an optional
IncrExpr defining the amount by which the variable is incremented
after each iteration. IncrExpr defaults to 1.

All three expressions are evaluated only once, before the loop is en-
tered.

The loop exits if index > EndExpr (if IncrExpr > 0), or if index
< EndExpr (if IncrExpr <= 0).

m Mobile Shell Reference Version 2.01 23

2. Language c© 2007 infowing AG

for x=5 to 6 by 0.25 do
print x*x

end
→ 25

27.5625
30.25
33.0625
36

A for loop over a range is equivalent to the following while loop:

index=StartExpr; e=EndExpr; d=IncrExpr;
while d>0 and index <= e or d<=0 and index >= e do
statements;
index += d

end

Care must be taken when using for loops with fractional numbers:
rounding errors may lead to surprising results:

for i=5 to 6 by 0.2 do
print i

end
→ 5

5.2
5.4
5.6
5.8

print i-6
→ 8.881784E-16

• The for loop iterating through the elements of an array looks as fol-
lows:

for index in ArrayExpr do
statements

end

The array is defined by ArrayExpr. index iterates through all ele-
ments of the array, starting at index 0 and ending with the last element
(index len(ArrayExpr)-1).

24 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.7. Statements

a=[430, 241, 187, 53, -1, 17]; s=0;
for x in a do
s += x

end;
print s
→ 927

A for loop over an array is equivalent to the following while loop:

a=ArrayExpr; i=0;
while i<len(a) do
index = a[i];
statements;
i++

end

ForStatement := for IndexVariable
(= Expression to Expression [by Expression] | in Expression)
do StatementList end .

IndexVariable := Identifier .

2.7.7 Case Statement

The case statement executes a sequence of statements depending on the
value of an expression matching the tag or tags of this sequence. It looks
as follows:

case Expression
in TagExpr1:
statements1
in TagExpr2a, TagExpr2b:
statements2

else
statements3

end

This case statement is equivalent to the following if statement:

m Mobile Shell Reference Version 2.01 25

2. Language c© 2007 infowing AG

x=Expression;
if x=TagExpr1 then
statements1

elsif x=TagExpr2a or x=TagExpr2b then
statements2

else
statements3

end

Expression is evaluated only once.
The tags (TagExpr1, TagExpr2a,...) are evaluated when they are tested.
Once a matching tag has been found, the remaining tags are not evaluated.
Equality of expression and tag is tested using the = operator (see section 2.6
(p. 16)). Arrays are thus not compared elementwise, and string comparison is
case sensitive.
The following example prints a different message for different values of i:

for i=1 to 10 do
case i
in 1:
print i,"is somewhat prime"
in 2, 3, 5, 7:
print i,"is prime"

else
print i,"is not prime"

end
end
→ 1 is somewhat prime

2 is prime
3 is prime
4 is not prime
5 is prime
6 is not prime
7 is prime
8 is not prime
9 is not prime
10 is not prime

26 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.7. Statements

CaseStatement := case Expression
{ in TagList ":" StatementList }
[else StatementList] end .

TagList := Expression { "," Expression } .

2.7.8 Break Statement

The break statement exits from the loop (while, do-until, for) contain-
ing it, and continues execution after the end of the loop.

x=-3;
while true do
if x<0 then break end;
y=x; x=x/2+1/x;
if x>=y then break end

end;
print x, x*x
→ -3 9

break always exits the innermost loop containing it. Breaking out of an outer
loop is not possible.

BreakStatement := break .

2.7.9 Return Statement

The return statement returns the value of an expression as a function result.
Outside a function, it ends execution of the module’s body; the return value
is discarded.
See section 2.8 (p. 29) for examples.

ReturnStatement := return Expression .

2.7.10 print Statement

The print statement provides a simple way of producing output. It writes
a line with zero, one or several expressions to the console. The expressions
are separated by single spaces. print without expressions just outputs a new

m Mobile Shell Reference Version 2.01 27

2. Language c© 2007 infowing AG

line.

print "odd:",3/7
→ odd: 0.4285714286
print
→

Expressions are formatted depending on their type:

• A Number is printed as string of length 12 or less (and rounded, if
necessary). If the value cannot be represented within 12 characters,
scientific representation is chosen.

print 13.5
→ 13.5
print 3e11
→ 300000000000
print -3e11; // -300000000000 has 13 characters
→ -3E+11

• A String is printed as is.

print "Hello,", ’world!’
→ Hello, world!

• A Boolean is printed as "true" or "false":

print 1 < 3
→ true

• An Array is printed elementwise, up to a length of 128. Elements which
are themselves arrays are printed as Array<len>.

28 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.8. Functions

a=[];
for i=1 to 10 do append(a, i) end;
print a
→ [1,2,3,4,5,6,7,8,9,10]
a[0]=a;
print a
→ [Array<10>,2,3,4,5,6,7,8,9,10]
for i=11 to 100 do append(a, i) end;
print a
→ [Array<100>,2,3,4,5,6,7,8,9,10,11,12,13,14,

15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,...<100>]

• A Function Reference is printed as &func<mod,func>, and as such of
little interest to the user (mod and func are indices into internal module
and function tables).

• The Null value is printed as null.

• A Native Object is printed as type@address. type defines the ob-
ject type, address is the location of the underlying native object in
memory.

f=io.create("sample.xml");
print f
→ stream@41255c

For finer control over output formatting, see .str (Library, p. 17) and module
io (Library, p. 35).

PrintStatement := ’print’ [Expression { ’,’ Expression }] .

2.8 Functions

Functions are a way to write repeatedly occuring computations only once, but
use them wherever needed. They also help in structuring longer scripts into
smaller, easily understandable units. By putting often occuring functions into
separate modules (see section 2.9 (p. 34)), function libraries can be created.

m Mobile Shell Reference Version 2.01 29

2. Language c© 2007 infowing AG

Functions normally have a set of parameters as input and return a single func-
tion result as output. Since the function result can be an array, an arbitrary
number of values can be returned.
The function is left by returning a value with a return statement. If the
function is left by reaching its end, null is returned.
The following example declares a function sqrt computing the square root
of a number x greater than or equal to 1, then calls it with parameters x=2
and x=9:

function sqrt(x)
y=x;
do
y0=y; y=(y+x/y)/2

until y>=y0;
return y

end // of function sqrt

print sqrt(2), sqrt(9)
→ 1.4142135624 3

This is quite a simple function with a single parameter x and a simple function
result (the value of y).
Multiple parameters are separated by commas. The following function find

finds the index of the first element in an array a with a value equal to x (there
is a standard function for this: array.index (Library, p. 21)).

function find(a, x)
i=0;
while i<len(a) and a[i]#x do
i++

end;
return i

end

print find([9, 11, 13], 11)
→ 1
print find([9, 11, 13], 8)
→ 3

A function can be recursive, i.e. can call itself: the following function clone

30 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.8. Functions

returns a full copy of its parameter t. It uses array.copy (Library, p. 20) to
copy all the elements, and .isarray (Library, p. 12) to test whether t is an
array.

function clone(t)
if isarray(t) then
c=array.copy(t);
// recursively clone the elements
for i=0 to len(t)-1 do c[i] = clone(t[i]) end;
return c

else
return t

end
end

If a function returns an array, the call can be followed by expressions in brack-
ets accessing certain elements:

a=[’one’:1, ’two’:2, ’three’:3];
print keys(a)[2]
→ three

Optional Parameters

Optional parameters are parameters with a default value: if the parameter is
omitted, the default value is assumed. The expression to compute the default
value can be any expression which is valid in the global context (i.e. it cannot
use a preceding function parameter). It is evaluated when the function is
called, not when the function is declared.
When calling a function, the number of actual parameters must not be less
than the number of mandatory parameters in the declaration of the function,
and not be greater than the total number of declared parameters.
The following rewrites function find by adding an optional parameter start
indicating the position to start searching at. The default value of start is 0,
so calling find with only two parameters produces exactly the same result as
before:

m Mobile Shell Reference Version 2.01 31

2. Language c© 2007 infowing AG

function find(a, x, start=0)
while start<len(a) and a[start]#x do
start++

end;
return start

end

print find([9, 11, 13], 11)
→ 1
print find([9, 11, 13], 11, 2) // start=2
→ 3

Functions with optional parameters can have options for simplified syntax in
interactive use (see section 3.1 (p. 41)). Options are simply single character
names for optional parameters.

function grow(years,interest=2) /i:interest
a=1;
while years>0 do
a+=a*interest/100; years--

end;
return a

end

grow(10,5)
→ 1.21899442
grow/i=5 10 // works only in interactive shells
→ 1.6288946268

Forward Declaration

Functions must be declared before they can be used. This means that if two
functions call each other, at least one must be declared with forward and
implemented later. In the following example, either f or g must be forward
declared, since function f calls function g and vice versa:

32 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.8. Functions

function g(x, a=3.2) forward // g is made known

function f(x)
if x<3 then
return g(x*x) // g is called

else
return x+2

end
end

function g(x, a=3.2) // here g is declared
return f(x+a)

end

The default values of the optional parameters of the forward declared func-
tion are only used to mark optional parameters, their values are ignored. The
default values are taken from the function implementation. The number of
mandatory and optional parameters in forward declaration and implementa-
tion must match.

Function References

Function references allow to change the function called in an expression dur-
ing the execution of a script: when a function reference is assigned to a vari-
able or a parameter, the function can be called via the variable. The reference
of a function is obtained by prefixing it with an ampersand character &:

f=&lower; // f now references the lower function
print f("Hello") // a call to lower
→ hello
f=&upper; // f now references the upper function
print f("Hello") // a call to upper
→ HELLO

Function references are often used to pass a function as a parameter to another
function: the function integ approximates the integral of f from a to b:

m Mobile Shell Reference Version 2.01 33

2. Language c© 2007 infowing AG

function integ(f, a, b, n=100)
s=(f(a)+f(b))/2; h=(b-a)/n;
for i=1 to n-1 do
s+=f(a+i*h)

end;
return s*h

end

function inv(x) return 1/x end
print integ(&inv, 1, 2)
→ 0.6931534305
print integ(&math.sin, 0, math.pi/2)
→ 0.9999794382
print integ(&math.sin, 0, math.pi/2, 10000)
→ 0.9999999979

FunctionDeclaration := function Identifier ’(’ [ParameterList] ’)’
(forward | {FunctionOption} StatementList end) .

ParameterList := (MandatoryParameter {’,’ MandatoryParameter} |
OptionalParameter) {’,’ OptionalParameter} .

MandatoryParameter := Identifier .
OptionalParameter := Identifier ’=’ Expression .
FunctionOption := ’/’ OptionName ’:’ ParameterName .
OptionName := IdentifierChar | Digit .
ParameterName := Identifier .

ActualParameterList := Expression {’,’ Expression} .
FunctionCall :=
[ModulePrefix] Identifier ’(’ [ActualParameterList] ’)’
{ ’[’ Expression ’]’ } .

2.9 Modules

A module in m is a script (a text file) which can be loaded by other scripts,
giving access to the functions and variables defined in the module.
Modules serve two purposes:

• They help in structuring complex scripts and make them easier to un-
derstand and maintain.

• They offer a way of extending the functionality of m by adding new
functions which can then be used by all scripts or interactive m ses-
sions. Entire libraries of often needed functions can be created that

34 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.9. Modules

way. The standard library of m described in the next chapter is orga-
nized into modules.

To load a module, a use clause is required:

use ModuleName1, ModuleName2, ...

This loads the modules ModuleName1, ModuleName2 and so on, and initial-
izes them, i.e. executes their main code . Each module is only initialized once
per process, even if it is loaded several times by different modules.
Module names are not case sensitive, since they are related to file names on
the underlying operating system.

use System // load module "system"
print System.appdir; // this will work
print system.appdir // this is the same

An alias name can be used in addition to the module name to denote the
module, e.g. to abbreviate a long module name. Alias names are local to
the module containing the use clause. Like module names, they are not case
sensitive:

use ModuleName as AliasName

As an example, consider the following module accounts maintaining a list
of accounts and allowing transfers between them:

S=[]; // initialization of the module
function get(nr)
x=accounts.S[nr];
// all accounts start at zero
if x=null then x=0 end;
return x

end
function xfer(f, t, x)
..S[f]=get(f)-x;
..S[t]=get(t)+x

end

Within the functions, the global variable S must be prefixed by the module
name (accounts.S), or by the double dot prefix indicating the current mod-
ule (..S).

m Mobile Shell Reference Version 2.01 35

2. Language c© 2007 infowing AG

The module can then be used as follows:

// load the module and name it ’acc’.
use accounts as acc
// transfer money out of the blue to the bank
acc.xfer(’blue’, ’bank’, 100000);
print acc.get(’bank’)
→ 100000
// transfer money from the bank to the Daltons
acc.xfer(’bank’, ’Daltons’, 10000);
print acc.get(’bank’)
→ 90000
// show all accounts
print acc.S
→ [-100000, 90000, 10000]

Module Prefixes

Global variables and functions must normally be prefixed by the name of the
module defining them (or the corresponding alias), and a dot. The prefix for
the main script and the builtin functions and variables is just a dot, without a
name.
Within a module, global variables and functions of the same module can be
prefixed by a double dot ..: in the code for module accounts above, ..S
denotes the same variable as accounts.S.
The prefixing is not always required when the variable or function is ref-
erenced in the module containing it. Furthermore, functions defined in the
main script or builtin standard functions only need a prefix if a function with
the same name exists in the current module. The following table summarizes
how variables and functions without module prefix are interpreted:

Variable x Function f

main module global .x .f

function in main module local x .f

module M global M.x M.f if it exists, .f otherwise
function in module M local x M.f if it exists, .f otherwise

36 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.9. Modules

Module Version

Each module has a version, which is a number in the form major.minor; the
minor component by convention has a 1/100th granularity.
The module version is a special variable version, which can only be mod-
ified in the module itself by assigning a number literal to it. If no number
has been assigned, the version is 0.0. The version of an uncorrectly loaded
optional module (see below) is null.
Source of module client:

version=1.23

use client
// require at least version 1.20 of client module
if client.version>=1.20 then
...

end

The version of the builtin module is always the version of the m application.
See also .version (Library, p. 19).

Optional Modules

Not all devices support all modules, or a module may simply not be installed
on a device. To cope with these cases in the code, a module can be loaded in
a use clause with the try prefix:

use try ModuleName

Loading a module with the try prefix has the following effects:

• If the module and all the modules it uses are correctly loaded, the
result is almost the same as without try. However, a reference
to an undefined function or variable of the module will not be de-
tected until the code reaches the corresponding statement and throws
ErrNotAvailable. This allows to run code even if some functions or
variables of a module do not exist.

• If the module ModuleName itself or one of the modules it uses is not

m Mobile Shell Reference Version 2.01 37

2. Language c© 2007 infowing AG

found or cannot be loaded, no error is marked. However, all references
to its variables and functions will result in ErrNotAvailable being
thrown; only the module’s version variable is accessible and will re-
turn null.

use try nirvana
nirvana.f(1, 2)
→ ErrNotAvailable thrown
print nirvana.val
→ ErrNotAvailable thrown
// nirvana.version is null: the module cannot be used
print nirvana.version
→ null

use try math
// there is no sinh function in module math
print math.sinh(1.2)
→ ErrNotAvailable thrown
// math.version is not null: the module can be used
print math.version
→ 1.08

ModuleImportList := use ModuleImport { ’,’ ModuleImport } .
ModuleImport := [try] ModuleName [as AliasName] .
AliasName := Identifier .

2.10 Exceptions

An exception is the result of an attempt to perform an invalid operation. By
default, exceptions result in a popup window showing the exception message
text.
An exception thrown by m will always have the following format:

ExceptionFormat := tag ’:’ message

The tag is always an (english) identifier, and independent of the language
chosen when installing m. The message however depends on the language.
See section A.1 (p. 53) for a list of m exception tags.

38 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 2.10. Exceptions

Catching Exceptions

Exceptions can also be handled (“catched”) in m itself:

try
// code potentially throwing exceptions

catch exc by
// code handling the exception exc

end

The result of such a try block is the following:

• If the code between try and catch does not throw any exception, the
code between catch and end will never be executed.

• If the code between try and catch does throw an exception, the ex-
ception will be assigned to the variable denoted by catch and the fol-
lowing code will be executed.

In the following example, a[1] tries to access an non-existing element. m
throws an ExcIndexOutOfRange, which is catched and simply printed:

try
a=[12];
print a[1]

catch e by
print "Got", e

end
→ Got ExcIndexOutOfRange: Array index is out of range

Try blocks can be nested to any depth (as long as the required memory is
available).

TryStatement := try StatementList
catch ExceptionVariable by StatementList end .

ExceptionVariable := Identifier .

Throwing Exceptions

Exceptions can also be thrown explicitly in the code:

throw expression

m Mobile Shell Reference Version 2.01 39

2. Language c© 2007 infowing AG

This will evaluate expression and use it as exception message. In the fol-
lowing example, an exception with the message “state.dat does not exist” will
be thrown if this file does not exist.

if not files.exists("state.dat") then
throw "state.dat does not exist"

end

ThrowStatement := throw Expression .

2.11 Source Structure

After introducing all elements of the m language, the complete structure of
an m source can be defined:

MSource := {ModuleImport | FunctionDeclaration | StatementList} .

The StatementLists (there can be several) are the “main code” of the script
which is executed directly. In a module, this corresponds to the module ini-
tialization code which is executed the first time the module occurs in a use

clause.

40 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG

3. Interactive Shells
m cannot only execute complete scripts, it can also be used interactively, as a
shell. When working in shell mode, there are a few differences to normal m
scripts:

• m statements are executed interactively: m code can be entered and
is executed immediately. Global variables and functions are preserved
between executions.

• The syntax allows some simplifications (see section 3.1 (p. 41)).

• Each time a shell is created, it loads and executes autoexec.m before
prompting the user. The script is first searched among the ordinary
scripts in system.docdir (Library, p. 47). If it is not found, the de-
fault script in system.appdir (Library, p. 47) is executed.

3.1 Simplified Syntax for Interactive Use

Since input capabilities of cellphones are poor, interactive shells support a
simplified syntax for function calls, and automatic output of computed ex-
pressions:

• A single Expressionwill be executed as ’print’ Expression, un-
less it is null:

m>0.85*23.10
→ 19.635
m>use math as m
m>m.sin(m.pi/4)
→ 0.7071067812

• A SimpleFunctionCall calls a function with only string or number
literal parameters, and options defined for the function.

m Mobile Shell Reference Version 2.01 41

3. Interactive Shells c© 2007 infowing AG

– Unquoted words (sequences not containing white space) on the
command line which are not keywords (see appendix A.2 (p. 57))
and are not starting with a digit or separator are interpreted as
string parameters.

– Numbers are interpreted as numeric parameters.

– Options for optional parameters (see section 2.8 (p. 29)) can be
specified anywhere with a preceding slash. If an equal sign fol-
lows, the following word or number is assigned to the correspond-
ing parameter. If no equal sign follows, true is assigned to the
corresponding parameter.

– Commas to separate the parameters are not permitted.

Again, the function result is printed if it is not null:

m>date // maps to date()
→ 2005-02-07 11:03:07
m>dir c:*.m/r // maps to dir(’c:*.m’, true)
→ C:\system\apps\mShell\autoexec.m

C:\documents\mShell\Jukebox.m

Simple function calls can only be used to call functions with parameters
which are string or number literals.

SimpleFunctionCall :=
[ModulePrefix] Identifier {SimpleParam | SimpleOption} .

SimpleParam :=
SimpleChar {SimpleChar} | StringLiteral | NumberLiteral .

SimpleOption := ’/’ (IdentifierChar | Digit) [’=’ SimpleParam] .
SimpleChar :=
(printable ISO-8859-1 char except white space and ’/’) .

3.2 Shell Builtin Functions

autoexec.m defines a number of function for interactive use. Most are just
wrappers around existing functions, to avoid typing longer names. With these
functions, files on the phone can be easily manipulated:

42 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 3.2. Shell Builtin Functions

// list all JPG files on the current drive
dir *.jpg/r/l
→ -- 05-08-09 2966 \documents\mShell\GraphTest.jpg

-- 11:37:02 17909 \Nokia\Images\FE_img\FEscr(0).jpg
...

// copy the JPG files in \documents\mShell to drive e:
cp \documents\mShell*.jpg e:
→ 1
// search for the mShell properties file
dir *.prp/r
→ \System\Apps\mShell\mShell.prp
// show its contents
type \system\apps\mShell\mShell.prp
→ mfont=LatinPlain12

outsize=20000
keep=busy

If a customized autoexec.m in system.docdir is created without incor-
porating the original script, these function are no longer available.

.cp

• function cp(src, dst, recursive=false)→ Number

/r:recursive

Copies a file, files matching a pattern, or an entire directory tree. Wrapper for
files.copy (Library, p. 28).

.del

• function del(pattern, recursive=false)→ Number

/r:recursive

Deletes a file, files matching a pattern, also in complete directory tree. Wrap-
per for files.delete (Library, p. 29).

m Mobile Shell Reference Version 2.01 43

3. Interactive Shells c© 2007 infowing AG

.dir

• function dir(pattern="*", recursive=false, long=false,
hidden=false, modified=0)→ null

/h:hidden

/l:long

/m:modified

/r:recursive

List files matching pattern on standard output. If pattern is a directory,
lists all files in it. Options are the following:

• With /h (hidden=true), also lists hidden files and directories.

• With /l (long=true), lists files and directories in a long format, in-
cluding readonly and hidden attributes and modification date (format
YY-MM-DD or hh:mm:ss).

• With /m=secs (modified=secs), lists only files which were modified
within the last secs seconds.

.edit

• function edit(name)→ null

Loads a file into the builtin editor and shows it. Wrapper for files.edit
(Library, p. 29).

.exit

• function exit()→ null

Exit this shell. This is equivalent to closing it. This function is only available
if module proc is available.

.md

• function md(path, all=false)→ Number

/a:all

44 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG 3.2. Shell Builtin Functions

Creates a directory or directories. Wrapper for files.mkdir (Library,
p. 30).

.mv

• function mv(src, dst, recursive=false)→ Number

/r:recursive

Moves a file, files matching a pattern, or an entire directory tree. Wrapper for
files.move (Library, p. 31).

.rd

• function rd(path, recursive=false)→ Number

/r:recursive

Removes a directory or an entire directory tree. Wrapper for files.rmdir
(Library, p. 31).

.ren

• function ren(old, new)→ Number

Renames a single file. Wrapper for files.rename (Library, p. 31).

.run

• function run(script, show=false)→ null

/s:show

Run another m script. If show=true, the script’s console is shown. This
function is only available if module proc is available.

.send

• function send(name, subject=null)→ null

Interactively sends a file over a channel chosen by the user. Wrapper for
files.send (Library, p. 33).

m Mobile Shell Reference Version 2.01 45

3. Interactive Shells c© 2007 infowing AG

.type

• function type(file, utf16=false, tail=false)→ null

/u:utf16

/t:tail

Writes the contents of file to standard output.
If utf16=true, assumes the file to be UTF-16 little endian encoded. Other-
wise, raw encoding is assumed.
If tail=true, only outputs the last 300 bytes. If tail=n where n is a num-
ber, outputs the last n bytes.

46 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG

4. SMS Control
If the m Supervisor & Viewer application is installed and licensed, the m ap-
plication can be controlled via SMS commands. Commands must be prefixed
by the smskey configured in the properties (see section A.3 (p. 57)).
The available SMS commands are:

• smskey run script args: starts the m application if it is not al-
ready running, then starts the script script with the arguments args.
Use function proc.args to get the arguments from within the script.
If the script is already running, this command is ignored.

• smskey shutdown: stops all scripts and exits the m application. If m
is not running, this command is ignored.

• smskey start: starts the m application. If m is already running, this
command is ignored.

• smskey status: m status inquiry, replies with an SMS describing
the status of the m application and some GSM information. If m is
running, the reply will look like:

m status: running, mem=mem,
net=mcc,mnc, loc=lac,cid, sig=signal

If m is not running, the reply will look like:

m status: NOT running (category reason),
net=mcc,mnc, loc=lac,cid, sig=signal

The meaning of the fields is the following:

m Mobile Shell Reference Version 2.01 47

4. SMS Control c© 2007 infowing AG

mem bytes of memory used by m
category m exit category (if panicked)
reason m exit reason (if panicked)
mcc GSM mobile country code
mnc GSM mobile network code
lac GSM location area code
cid GSM cell id
signal GSM signal strength

• smskey status phone: like status above, but the response is sent
to phone number phone. phone must not contain white space.

• smskey stop script: stops execution of script script. If script
is not running, this command is ignored.

The following examples require the smsctrl property to be enabled, and
smskey to be set to mshell:

1. SMS to start the m application:

mshell start

2. SMS to start the Supervisor script, passing it 0769988776 as an
argument:

mshell run Supervisor 0769988776

3. SMS to check the status of the m application:

mshell status
→ m status: NOT running (E32USER-CBase 71),

net=228,115, loc=1616,17689, sig=3

m is not running because it crashed with a E32USER-CBase 71 panic.
The phone is somewhere near cell 17689 in area 1616 of the Swisscom
GSM network.

48 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG

5. m and Symbian
Platform Security
With the 3rd edition of its OS, Symbian OS has introduced platform security,
with mandatory signing of applications and libraries. Platform security con-
strains runtime environments like m, in particular those like m which permit
software development directly on the device.

5.1 Capabilities

Platform security is implemented by granting applications, libraries and pro-
cesses created from them capabilities. Although somewhat similar to the user
permissions described in the previous section, capabilities are completely in-
dependent of user permissions. Successfully executing an m function requires
both: the corresponding user permissions granted by m and the capabilities
granted by the OS:

• If a function is not permitted by the m user, it throws
ExcNotPermitted.

• If a function is not permitted by platform security, it throws
ErrPermissionDenied.

Regarding m, capabilities can be split into three classes:

• The basic capabilities, always available in m. These are the only capa-
bilities granted when m has been “self signed”, i.e. signed with a certifi-
cate generated by the m developers (or by yourself, if you have down-
loaded the corresponding tools). Basic capabilities must be granted by
the user when installing the m application. Note that the default setting
on some Symbian 3rd Edition devices disallows installing self signed

m Mobile Shell Reference Version 2.01 49

http://www.symbian.com

5. m and Symbian Platform Security c© 2007 infowing AG

applications; the setting can usually be changed from the program man-
ager application. A few devices completely prevent installation of self
signed applications.

A special rule applies to the “Location” capability required to access
network and cell information: in m, it is considered an extended capa-
bility, even though it is a basic one on many devices. The self signed m
package therefore does not include it to remain installable on as many
devices as possible.

• The extended capabilities, always available on Symbian 2nd Edition
phones, and when m has been signed with either a developer certificate
(see next section), or by the Symbian Signed process.

• The approved capabilities which are only granted by the platform pro-
ducer or the phone manufacturer. m on Symbian 3rd Edition phones
currently does not support any of the functions requiring approved ca-
pabilities.

The system.caps (Library, p. 47) constant reflects the capabilities granted
to the m process:
system.caps Granted capabilities
basic Only basic.
extended Basic and extended.
all Basic, extended and approved. Currently only available

on Symbian 2nd Edition phones.
Please refer to the official symbian documentation for fur-
ther information. For a list of capabilities, see e.g.
forum.nokia.com/main/platforms/s60/capability descriptions.html.

5.2 Signing with a Developer Certificate

If you want to use m with extended capabilities on a Symbian 3rd Edition
phone, the only way is currently to obtain your own developer certificate
(“DevCert”) from Symbian Signed to sign the .sis file containing the bi-
naries with extended capabilities. A developer certificate has the following
restrictions:

50 m Mobile Shell Reference Version 2.01

http://forum.nokia.com/main/platforms/s60/capability_descriptions.html
https://www.symbiansigned.com

c© 2007 infowing AG 5.2. Signing with a Developer Certificate

• It is bound to a set of specific IMEIs, i.e. specific devices, specified
when obtaining the certificate. This means that the package is not in-
stallable on other devices.

• Its validity is currently limited to six months. The entire process of ob-
taining a certificate, signing the package and installing it must therefore
be repeated every six months.

5.2.1 Obtaining a DevCert

Step by step, a DevCert for a single phone can be obtained as follows:

1. Go to www.symbiansigned.com and register yourself.

2. Download the DevCertRequest application from Symbian Signed,
and install it on a PC running Windows.

3. Make sure you know the IMEI of the phone you want to create the
certificate for. Within m, you can obtain it from gsm.imei (Library,
p. 185). Or dial *#06# on the phone.

4. Run the DevCertRequest application. The result will be two files, a
certificate request file (.csr suffix) and a private key file (.key suffix),
possibly encripted by a password you have chosen.

The application will tell you quite precisely what it needs. When
asked for the application capabilities, select them all. The unsigned
DevCert version of m requires at least the following 13 capabili-
ties: LocalServices, Location, NetworkServices, PowerMgmt,
ProtServ, ReadDeviceData, ReadUserData, SurroundingsDD,
SwEvent, TrustedUI, UserEnvironment, WriteDeviceData,
WriteUserData.

5. Log in to www.symbiansigned.com, select “My Symbian Signed” and
request a developer certificate. Upload the certificate request generated
before. After a few seconds, the actual certificate should be ready for
download from “My DevCerts”. Download the file, giving it a .cer or
.cert suffix.

m Mobile Shell Reference Version 2.01 51

http://www.symbiansigned.com
http://www.symbiansigned.com

5. m and Symbian Platform Security c© 2007 infowing AG

5.2.2 Signing m with the DevCert

To sign m with a developer certificate, you need the following:

1. The unsigned DevCert version of the m installation package for your
device, e.g.mShell-S60-3rd-DC.sis.

2. The signsis.exe application. As this 1.2 MB application cannot be
distributed separately, you must download and install the entire Sym-
bian 3rd Edition C++ SDK for (e.g. from developer.nokia.com) to get
it.

3. Your developer certificate file, e.g. MyDevCert.cer.

4. Your private key file to autenticate the developer certificate, e.g.
MyDevCert.key, with password.

Then sign the unsigned installation package by running the following com-
mand from the Windows command prompt1:

signsis -s mShell-S60-3rd-DC.sis mShell-S60-3rd-MyDC.sis
MyDevCert.cer MyDevCert.key password

mShell-S60-3rd-MyDC.sis should now be installable on the phone spec-
ified in the developer certificate.

1signsis will run without problems under Linux using wine.

52 m Mobile Shell Reference Version 2.01

http://developer.nokia.com

c© 2007 infowing AG

A. Appendix

A.1 Exception Tags

This section lists the exceptions tags with their english error message.

Environment Exceptions

Environment exceptions are usually thrown by the underlying operation sys-
tem, e.g. when trying to access a file which does not exist.

• ErrAbort: Operation aborted.

• ErrAccessDenied: Access denied.

• ErrAlreadyExists: File already exists.

• ErrArgument: Invalid function argument.

• ErrBadHandle: Object handle is bad.

• ErrBadName: Name is bad.

• ErrCancel: Operation canceled.

• ErrCommsBreak: Break in communications occured.

• ErrCommsFrame:: Serial framing error.

• ErrCommsLineFail:: Serial line failed.

• ErrCommsOverrun:: Serial overrun error.

• ErrCommsParity:: Serial parity error.

• ErrCorrupt: File or database corrupted.

• ErrCouldNotConnect:: Could not connect.

• ErrCouldNotDisconnect:: Could not disconnect.

• ErrDied: Thread or process died.

m Mobile Shell Reference Version 2.01 53

A. Appendix c© 2007 infowing AG

• ErrDirFull: Directory is full.

• ErrDisconnected:: Link is disconnected.

• ErrDiskFull: Disk is full.

• ErrDivideByZero: Integer division by zero.

• ErrEof: Eof reached.

• ErrExtensionNotSupported: Extension function is not supported.

• ErrGeneral: General problem.

• ErrHardwareNotAvailable: Hardware is not available or not en-
abled.

• ErrInUse: File or device is in use.

• ErrLocked: Object locked.

• ErrNoMemory: Out of memory. This exception cannot be catched.

• ErrNotFound: File or item not found.

• ErrNotReady: Device is not ready.

• ErrNotSupported: Operation not supported.

• ErrOverflow: Numeric overflow.

• ErrPathNotFound: Path not found.

• ErrPermissionDenied: Permission denied by platform security.

• ErrServerTerminated: Server has terminated.

• ErrServerBusy: Server is busy.

• ErrSessionClosed: Server session has been closed.

• ErrTimedOut:: Operation timed out.

• ErrTooBig:: Value or array too big.

• ErrTotalLossOfPrecision: Total loss of precision.

• ErrUnderflow: Numeric underflow.

• ErrWrite: Write failed.

• ExcNotPermitted: Operation not permitted by user.

54 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG A.1. Exception Tags

Programming Exceptions

Programming exceptions are thrown by m, and usually caused by an error in
your code or an unexpected user input.

• ExcArrayNotNumber: Operand is an array, not a number.

• ExcBooleanNotNumber: Operand is a boolean, not a number.

• ExcForwardFunction: Function is only forward defined.

• ExcFunctionNotNumber: Operand is a function, not a number.

• ExcIndexOutOfRange: Array index is out of range.

• ExcInterrupted: Interrupted function call.

• ExcInvalidIndexType: Array index is neither number nor string.

• ExcInvalidNumber: Wrong number format.

• ExcInvalidUTF8: Invalid UTF-8 character read.

• ExcNativeNotNumber: Operand is native object, not a number.

• ExcNoSuchKey: No array element for key.

• ExcNotArray: Operand is not an array.

• ExcNotAvailable: Function or variable is unavailable.

• ExcNotBoolean: Operand is not a boolean.

• ExcNotComparable: Can only order two numbers or two strings.

• ExcNotFunction: Operand is not a function reference.

• ExcNotNative: Operand is not a native object.

• ExcNotNumber: Operand is not a number.

• ExcNotString: Operand is not a string.

• ExcNullNotNumber: Operand is null, not a number.

• ExcStringNotNumber: Operand is a string, not a number.

• ExcStringPosOutOfRange: String position is out of range.

• ExcTooManyGlobals: Too many global variables, split into modules.

• ExcUnknownModule: Unknown module referenced by native func-
tion.

m Mobile Shell Reference Version 2.01 55

A. Appendix c© 2007 infowing AG

• ExcValueOutOfRange: Value or parameter is outside valid range.

• ExcWrongNative: Operand has wrong native object type.

• ExcWrongParamCount: Too many or too few function parameters.

Internal Error Exceptions

Internal error exceptions are thrown by m when it detects an internal incon-
sistency. These exceptions cannot be catched, and are most likely caused by
a bug in m or in a native module.

• ErrDisabledFunction: Internal error: interpreting disabled func-
tion.

• ErrDuplicateModule: Internal error: duplicate module.

• ErrDuplicateNative: Internal error: duplicate native function.

• ErrEndOfCode: Internal error: falling through end of code.

• ErrInvalidDll: Internal error: DLL did not return module.

• ErrInvalidFrame: Internal error: invalid stack frame contents.

• ErrInvalidInstruction: Internal error: invalid instruction.

• ErrInvalidStack: Internal error: invalid stack.

• ErrInvalidVariableIndex: Internal error: invalid variable index.

• ErrMissingDll: Internal error: module DLL is missing.

• ErrNativeFunction: Internal error: interpreting native function.

• ErrNoCode: Internal error: interpreting without code.

• ErrNoNativeFunction: Internal error: no native function to add op-
tion to.

• ErrRTVersionMismatch: Internal error: runtime version mismatch.
Get an up to date version of the runtime or native module.

• ErrStringExtension: Internal error: string extension.

56 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG A.2. Reserved words

A.2 Reserved words

In the m language, keywords, like identifiers, are case sensitive. The follow-
ing keywords are reserved and cannot be used as identifiers:
and do function shl until
as else if shr use
break elsif in then while
by end not throw
case false null to
catch for or true
const forward return try

A.3 Properties (.prp) File

Global behaviour of the m application is configured in the m properties. Se-
lecting View→Properties opens a dialog to edit the properties.
The properties are stored in an ASCII text file
\system\apps\mShell\mShell.prp containing key-value pairs. Each
pair is on a single line, the key and the value separated by an equal (=)
character.
The following keys are recognized by m:

• autogo=script1,script2,...

A comma separated list of scripts to run when starting m. In conjunc-
tion with onboot, these scripts are run when the phone is switched on.
The script names must not contain any blanks.

• bgcolor=black|white|red|green|blue|yellow|cyan|

magenta|#rrggbb

The background color of console and editor. #rrggbb is a HTML-like
hexadecimal notation, e.g. #ff00ff for magenta.

• encodings=bom|utf-8|utf-16le|utf-16be|8-bit

The encoding to use for m source files and files loaded into and saved
from the m editor. This setting does not change the behaviour of the
I/O streams of module io (Library, p. 35).
If set to bom, files read are expected to carry an initial Byte Order Mark

m Mobile Shell Reference Version 2.01 57

A. Appendix c© 2007 infowing AG

(BOM, character 0xfeff) determining their encoding; files without
BOM are treated as sequences of 8-bit characters. In this mode, files
are saved in UTF-8 with initial BOM.
If set to utf-8, files are read and saved in UTF-8. No BOM is expected
or written.
If set to utf-16le, files are read and saved in UTF-16 Little Endian.
No BOM is expected or written.
If set to utf-16be, files are read and saved in UTF-16 Big Endian. No
BOM is expected or written.
If set to 8-bit1, files are read and saved considering only the lower
eight bits of all characters. No BOM is expected or written.

• fgcolor=black|white|red|green|blue|yellow|cyan|

magenta|#rrggbb

The foreground (text) color of console and editor.

• keep=true|yes|y|1 | false|no|n|0 | busy

If set to true, yes, y or 1, the m application cannot be exited automat-
ically by the system, e.g. if it is running low on memory, or if m is to
be removed because it is updated by a new installation.
If set to busy, exiting is prevented if there are processes running or
waiting for input.
For all other values, m behaves like any other “well behaving” appli-
cation, i.e. it can be exited at any time if the operating system requests
it.

• mfont=typeface,points,bold,italic

The font to use in the m console and editor. A leading star (*) on the
typeface is ignored. points (integer), bold (boolean) and italic

(boolean) are optional. See also ui.mfont (Library, p. 86).

• onboot=true|yes|y|1 | false|no|n|0 | once | restart

If set to true, yes, y or 1, the m application will be started automati-
cally when the phone is booted up, i.e. switched on.
If set to once, m is only started at the next bootup, as the entry is au-
tomatically set to n afterwards. This is the recommended setting for
disaster prevention during script testing.
If set to restart, m is started automatically when the phone is booted

1This was the mode used prior to version 1.17.

58 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG A.3. Properties (.prp) File

up, and restarted each time about 20 seconds after it exits (orderly or
because of a crash).
This feature requires the m Supervisor & Viewer application to be in-
stalled.

• outsize=charcount

The maximum number of characters in the console output, before trun-
cating at the beginning. Truncation happens in chunks of about 500
characters. Set to 0 for an unlimited output size. Handling large output
output sizes slows m down.

• perms=permissions

The permission bits, defining the permissions granted to m scripts. See
section A.4 (p. 61).

• smsctrl=true|yes|y|1 | false|no|n|0

If set to true, yes, y or 1, the m application can be controlled via SMS
commands, even if it is not running. See chapter 4 (p. 47).
This feature requires the m Supervisor & Viewer application to be in-
stalled.

• smskey=keyword

Any SMS containing keyword as the first characters (ignoring case) is
considered a command and sent to the m application.

• smsnr=suffix

The last digits of the sender phone number which can control the m
application via SMS. If empty, anybody knowing smskey can control
m.

All other keys are silently ignored. This can be used to disable entries by just
putting e.g. a hash mark in front of them.
A sample properties file might look as follows:

m Mobile Shell Reference Version 2.01 59

A. Appendix c© 2007 infowing AG

autogo=TrackMe,PhoneMonitor
keep=busy
mfont=Monospace,14,false,false
onboot=once
fgcolor=#008000
bgcolor=white
outsize=10000
encoding=utf-8
perms=159
smsctrl=yes
smsnr=4561234
smskey=mshell

60 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG A.4. User Permissions

A.4 User Permissions

Permission for certain operations can be granted and denied by the user. Any
operation with insufficient permissions will throw ExcNotPermitted. Se-
lecting View→Permissions opens a dialog to edit the permissions.
The individual permissions are:

Name Bit Meaning
ReadDoc 1 Read access to files in system.docdir and its sub-

directories.
WriteDoc 2 Write access to files in system.docdir and its sub-

directories.
ReadApp 4 Read access to other application’s data.
WriteApp 8 Write access to other application’s data.
FreeComm 16 Access to free communication resources (receiving

messages, Bluetooth).
ReadAll 32 Read access to all files.
WriteAll 64 Write access to all files. Granting write access to

all files also allows modifying the permissions.
CostComm 128 Access to chargeable communication resources

(sending messages, TCP/IP).

Thus, if a function requires Read(file) , then

• If file denotes a file or directory in system.docdir or one of its sub-
directories, the ReadDoc permission must be granted for the function
to succeed.

• If file denotes a file or directory outside system.docdir or one
of its subdirectories, the ReadAll permission must be granted for the
function to succeed.

Likewise, if a function requires Write(file) , the WriteDoc or WriteAll
permissions must be granted.

m Mobile Shell Reference Version 2.01 61

A. Appendix c© 2007 infowing AG

62 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG Index

Index
.., 36

.prp file, 57

;, 18

8-bit, 58

Array, 6

array

associate, 12

indexing, 11

key, 12

literal, 11

arrays, 11

assignment, 19

autoexec.m, 41–43

basic capabilities, 49

bom, 57

Boolean, 6

boolean

literal, 9

break, 27

capabilities, 49

case, 25

clone, 30

comments, 6

concatenation, 16

const, 20

constant, 20

CostComm, 61

cp function (autoexec.m), 43

data types, 5

del function (autoexec.m), 43

DevCert, 50, 51

developer certificate, 50

dir function (autoexec.m), 44

do, 23

double dot, 35, 36

edit function (autoexec.m), 44

ErrAbort, 53

ErrAccessDenied, 53

ErrAlreadyExists, 53

ErrArgument, 53

ErrBadHandle, 53

ErrBadName, 53

ErrCancel, 53

ErrCommsBreak, 53

ErrCommsFrame:, 53

ErrCommsLineFail:, 53

ErrCommsOverrun:, 53

ErrCommsParity:, 53

ErrCorrupt, 53

ErrCouldNotConnect:, 53

ErrCouldNotDisconnect:, 53

ErrDied, 53

ErrDirFull, 54

ErrDisabledFunction, 56

ErrDisconnected:, 54

m Mobile Shell Reference Version 2.01 63

Index c© 2007 infowing AG

ErrDiskFull, 54

ErrDivideByZero, 54

ErrDuplicateModule, 56

ErrDuplicateNative, 56

ErrEndOfCode, 56

ErrEof, 54

ErrExtensionNotSupported, 54

ErrGeneral, 54

ErrHardwareNotAvailable, 54

ErrInUse, 54

ErrInvalidDll, 56

ErrInvalidFrame, 56

ErrInvalidInstruction, 56

ErrInvalidStack, 56

ErrInvalidVariableIndex, 56

ErrLocked, 54

ErrMissingDll, 56

ErrNativeFunction, 56

ErrNoCode, 56

ErrNoMemory, 54

ErrNoNativeFunction, 56

ErrNotAvailable, 37, 38

ErrNotFound, 54

ErrNotReady, 54

ErrNotSupported, 54

ErrOverflow, 54

ErrPathNotFound, 54

ErrPermissionDenied, 49, 54

ErrRTVersionMismatch, 56

ErrServerBusy, 54

ErrServerTerminated, 54

ErrSessionClosed, 54

ErrStringExtension, 56

ErrTimedOut:, 54

ErrTooBig:, 54

ErrTotalLossOfPrecision, 54

ErrUnderflow, 54

ErrWrite, 54

ExcArrayNotNumber, 55

ExcBooleanNotNumber, 55

ExcDivideByZero, 14

exceptions, 38

catching, 39

environment, 53

internal, 56

programming, 55

tags, 53

throwing, 39

ExcForwardFunction, 55

ExcFunctionNotNumber, 55

ExcIndexOutOfRange, 11, 39, 55

ExcInterrupted, 55

ExcInvalidIndexType, 55

ExcInvalidNumber, 55

ExcInvalidUTF8, 55

ExcNativeNotNumber, 55

ExcNoSuchKey, 55

ExcNotArray, 55

ExcNotAvailable, 55

ExcNotBoolean, 22, 23, 55

ExcNotComparable, 17, 55

ExcNotFunction, 55

ExcNotNative, 55

ExcNotNumber, 55

64 m Mobile Shell Reference Version 2.01

c© 2007 infowing AG Index

ExcNotPermitted, 49, 54, 61

ExcNotString, 55

ExcNullNotNumber, 55

ExcStringNotNumber, 55

ExcStringPosOutOfRange, 55

ExcTooManyGlobals, 55

ExcUnknownModule, 55

ExcValueOutOfRange, 56

ExcWrongNative, 56

ExcWrongParamCount, 56

exit function (autoexec.m), 44

expressions, 13

for, 23

forward, 32

FreeComm, 61

function

forward, 32

literal, 9

parameter, 11, 30

recursive, 11, 30

reference, 6, 29, 33

result, 30

function reference, 33

functions, 29

Global variables, 11

hexadecimal, 8

if, 21

increment, 20

keywords, 57

literals, 7

Local variables, 11

Location capability, 50

md function (autoexec.m), 44

module

alias, 35

initialization, 35

optional, 37

prefix, 36

version, 37, 38

modules, 34

mv function (autoexec.m), 45

native objects, 6

null, 6

literal, 10

Number, 6

number

hexadecimal, 8

literal, 7

numbers

precision, 6

range, 6

operands, 13

operator

arithmetic, 14

bitwise, 15

boolean, 17

comparison, 16

concatenation, 16

precedence, 14

optional parameters, 31

m Mobile Shell Reference Version 2.01 65

Index c© 2007 infowing AG

parameter

optional, 31

parameters, 30

permissions, 61

platform security, 49

precedence, 14

print, 27

properties file, 57

rd function (autoexec.m), 45

ReadAll, 61

ReadApp, 61

ReadDoc, 61

recursive function, 11

ren function (autoexec.m), 45

reserved words, 57

return, 27, 30

run function (autoexec.m), 45

semicolon, 18

send function (autoexec.m), 45

shell, 41

SMS control, 47

statement list, 18

statements, 18

String, 6

string

literal, 8

syntax

EBNF, 5

interactive, 41

try

module, 37

prefix, 37

type function (autoexec.m), 46

until, 23

use, 35, 40

utf-16be, 58

utf-16le, 58

utf-8, 58

variable, 10

global, 11

local, 11

while, 22

WriteAll, 61

WriteApp, 61

WriteDoc, 61

66 m Mobile Shell Reference Version 2.01

	Introduction
	Language
	Data Types
	Comments
	Literals
	Variables
	Arrays
	Expressions
	Statements
	Assignment
	Increment
	If Statement
	While Statement
	Do-Until Statement
	For Statement
	Case Statement
	Break Statement
	Return Statement
	print Statement

	Functions
	Modules
	Exceptions
	Source Structure

	Interactive Shells
	Simplified Syntax for Interactive Use
	Shell Builtin Functions
	.cp
	.del
	.dir
	.edit
	.exit
	.md
	.mv
	.rd
	.ren
	.run
	.send
	.type

	SMS Control
	m and Symbian Platform Security
	Capabilities
	Signing with a Developer Certificate
	Obtaining a DevCert
	Signing m with the DevCert

	Appendix
	Exception Tags
	Reserved words
	Properties (.prp) File
	User Permissions

	Index

