
Library
Version 2.01

m Mobile Shell, Library, Version 2.01
Written by Lukas Knecht

www.m-shell.net

Document IW-M-LIB-1.3

c© 2004-2007 infowing AG, 8703 Erlenbach, Switzerland

The information contained herein is the property of infowing AG and shall neither be reproduced
in whole or in part without prior written approval from infowing AG. All rights are reserved,
whether the whole or part of the material is concerned, specifically those of translation, reprint-
ing, reuse of illustration, broadcasting, reproduction by photocopying machine or similar means
and storage in data banks. infowing AG reserves the right to make changes, without notice, to the
contents contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the material as presented.

Typeset in Switzerland.

c© 2007 infowing AG Contents

Contents

1 Introduction 3
1.1 Module and Function Availability 3
1.2 Path and File Names . 4

2 Fundamental Modules 7
2.1 Builtin Functions and Constants 7
2.2 Module array: Array Functions 19
2.3 Module files: File and Directory Access 27
2.4 Module io: File and Stream Input/Output 35
2.5 Module system: System Related Functions 45
2.6 Module time: Time and Date Functions 48
2.7 Module zip: ZIP Archives 51

3 User Interface 55
3.1 Module graph: Screen Graphics 55
3.2 Module ui: User Interface Functions 76
3.3 Module vibra: Vibration Control 91

4 Mathematics 93
4.1 Module bigint: Arbitrarily Large Integers 93
4.2 Module math: Mathematical Functions 98

5 Personal Data 103
5.1 Module agenda: Agenda Database 103
5.2 Module contacts: Contacts Database 110

m Mobile Shell Library Version 2.01 1

Contents c© 2007 infowing AG

6 Communications 119
6.1 Module bt: Bluetooth Communication 119
6.2 Module comm: Serial Communications 131
6.3 Module net: TCP/IP Networking 135

7 Messaging 147
7.1 Module mms: Multimedia Messages 147
7.2 Module msg: Generic Message Access 153
7.3 Module obex: Object Exchange Client 157
7.4 Module sms: Short Messages 161

8 Multimedia 167
8.1 Module audio: Audio Functions 167
8.2 Module cam: Onboard Camera 175

9 Telephony 183
9.1 Module gsm: GSM information 183
9.2 Module phone: Phone Calls 186

10 Applications and Processes 191
10.1 Module app: Application Control 191
10.2 Module proc: m Processes 197

Index 203

2 m Mobile Shell Library Version 2.01

c© 2007 infowing AG

1. Introduction
The m library contains a large number of functions, organized into modules.
Some functions are the standard functions you expect in any serious program-
ming language. Others are very specific to the typical capabilities of a smart
phone.
New modules can be added by yourself or by a third party, either written in
m, or written for the native platform. For Symbian OS, this is typically a
dynamic library.
See section 2.9 (Reference, p. 34) for more information on using and writing
modules. Just a reminder: to use any of the standard modules, you have to
load it via the use clause:

use math
print math.random()
→ 0.1488330803

1.1 Module and Function Availability

The items presented in this manual can be marked by the following:

• A tag with required user permissions (see section A.4 (Reference,
p. 61)), for instance

Permissions: ReadApp

If there is no such tag, no user permissions are required.

• A tag with capabilities required by Symbian platform security (see
chapter 5 (Reference, p. 49)), for instance

Capabilities: extended

If there is no such tag, basic capabilities are sufficient.

• A table describing compatibility issues on specific phones or phones
from specific manufacturers, for instance

m Mobile Shell Library Version 2.01 3

http://www.symbian.com

1. Introduction c© 2007 infowing AG

Compatibility of some function
ACME phones Call is ignored

If there is no such table, the function is supposed to work on all phones.

1.2 Path and File Names

A complete file name in m (and in Symbian OS) consists of a drive, a di-
rectory path, and the file name with extension. The drive is followed by a
colon; drive, directories and file name are separated by backslashes (\). Since
the backslash is also the escape character in strings, each backslash must be
entered as two backslashes (unless simplified interactive syntax is used, see
section 3.1 (Reference, p. 41)):

path="c:\\documents\\mShell\\script.m";

By convention, a directory name always ends with a backslash, allowing im-
mediate differentation between directory names and file names.
To avoid the need for a fully specified file name, each process in m maintains a
current directory (see .cd (p. 7)). Unlike in DOS/Windows, which maintains
a current directory for each drive, there is only one current directory in m,
which always includes the drive.
All functions taking file or directory names as arguments therefore accept
absolute, drive-relative or relative file names:

• Absolute file names start with the drive letter. The directory path al-
ways starts from the root of the drive, even if the first backslash is
missing.

cd("c:documents");
print cd()
→ c:\documents\

• Drive-relative file names start with a backslash. They are always rela-
tive to the root of the current drive (which is part of the current direc-
tory).

4 m Mobile Shell Library Version 2.01

http://www.symbian.com

c© 2007 infowing AG 1.2. Path and File Names

cd("\\documents");
print cd()
→ c:\documents\

• Relative file names start with a directory name, or simply a file name.
They are always relative to the current directory.

cd("mShell");
print cd()
→ c:\documents\mShell\

m also interprets two special directory names:

• A single dot refers to the current directory.

• A single dot refers to the preceding directory.

Single and double dots can occur anywhere in the directory path.

cd("c:\\documents");
cd(".\\mShell"); // . refers to c:\documents
print cd()
→ c:\documents\mShell\
cd("..\\Jotter"); // .. refers to c:\documents
print cd()
→ c:\documents\Jotter\

m Mobile Shell Library Version 2.01 5

1. Introduction c© 2007 infowing AG

6 m Mobile Shell Library Version 2.01

c© 2007 infowing AG

2. Fundamental Modules

2.1 Builtin Functions and Constants

The functions listed here are the standard m functions available without im-
porting any module. They can be called without a module or alias prefix, or
with an empty prefix (a dot).

print date();
print .date()

Both statements have the same effect.

.append

• function append(array, element, ...)→ null

Append one or more elements to the the end of array. The length of array
is increased by the number of elements appended.

arr=[];
append(arr, 17, "x");
print arr
→ [17,x]

.cd

• function cd()→ String

• function cd(newpath)→ String

Gets and sets the current (default) directory. This is the directory all file or
directory operations relate to. See also section 1.2 (p. 4).
Without an argument, cd returns the current directory without modifying it.
With a single argument, it changes the current directory to newpath and re-

m Mobile Shell Library Version 2.01 7

2. Fundamental Modules c© 2007 infowing AG

turns the previously set current directory. newpath can be absolute, or rela-
tive to the current directory.

cd("c:\\");
print cd("system")
→ c:\
print cd("apps")
→ c:\system\
print cd()
→ c:\system\apps\

See also: files.mkdir (p. 30), files.rmdir (p. 31)

.char

• function char(array)→ String

Converts the array of numbers array to a string, interpreting each number as
a UNICODE R© BMP character code. The codes must be numbers between 0
and 216 − 1 = 65535.

print char([72,101,108,108,111])
→ Hello

See also: .code (p. 8)

.cls

• function cls()→ null

Clears the screen, deleting all console output produced so far.

cls()

.code

• function code(text)→ Array

• function code(text, pos)→ Number

With a single argument, converts text to an array containing the

8 m Mobile Shell Library Version 2.01

http://www.unicode.org

c© 2007 infowing AG 2.1. Builtin Functions and Constants

UNICODE R© number for each character. With two arguments, returns the
code for the character at position pos of text.

print code("Hello")
→ [72,101,108,108,111]
print code("Hello", 1)
→ 101

See also: .char (p. 8).

.collate

• function collate(s1, s2)→ Number

Compare the two strings s1 and s2, correctly ordering accents and umlauts
depending on the current locale. Returns a negative number if s1 < s2, zero
if s1 = s2, a positive number if s1 > s2.

// Flüge comes before Flugzeug in lexical ordering
print collate("Flüge", "Flugzeug")
→ -1
// simple raw ordering produces the wrong result
print "Flüge" < "Flugzeug"
→ false

See also: constant array.collate (p. 27).

.date

• function date()→ String

Get the current local date and time in the format YYYY-MM-DD hh:mm:ss.
See also module time (p. 48).

print date()
→ 2005-02-21 12:18:55

m Mobile Shell Library Version 2.01 9

http://www.unicode.org

2. Fundamental Modules c© 2007 infowing AG

.equal

• function equal(a, b)→ Boolean

Compares two values a and b for equality and returns true if they are equal,
false if they are not equal. Unlike the m language = operator, this function
compares arrays elementwise: two arrays are identical if they have the same
length and all their elements are equal.

a=[1, 2, [3, 4]]
b=a;
print a=b, equal(a, b)
→ true true
b=[1, 2, [3, 4]];
print a=b, equal(a, b)
→ false true

Note that the function will crash m if you pass two identical recursive arrays
for which equality or inequality cannot be determined.

a=[0]; a[0]=a;
b=[0]; b[0]=b;
equal(a, b) // this will crash m

.delete

• function delete(text, start)→ String

• function delete(text, start, length)→ String

Deletes the substring from text from position start, either to the end of
text, or the next length characters. The first character has position 0.
Throws ExcStringPosOutOfRange if not 0 <= start <= len(text),
or if not 0 <= length <= len(text) - start.

print delete("Hello world!", 6)
→ Hello
print substr("Hello world!", 3, 5)
→ Helrld!

See also: .substr (p. 18)

10 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.1. Builtin Functions and Constants

.hexnum

• function hexnum(text)→ Number

Converts the string text representing a hexadecimal integer value into the
value. The value can be signed. Uppercase and lowercase digits are allowed,
and leading and trailing blanks are ignored.

print hexnum("1fff");
→ 8191
print hexnum(" -ABACADA ");
→ -180013786

See also: .num (p. 15)

.hexstr

• function hexstr(number, width=0)→ String

Formats number into an integer hexadecimal value. If necessary, zeros are
added before the string until its length is at least width.

print hexstr(8191)
→ 1fff
print hexstr(-180013786, 12)
→ -0000abacada

See also: .str (p. 17)

.index

• function index(text, pattern, start=0, folded=false)→
Number

Searches the string text for the first occurence of the string pattern at or
after start and returns the position. If pattern does not occur, -1 is returned.
If folded=true, the comparison between text and pattern ignores case.
Throws ExcStringPosOutOfRange if not 0 <= start <= len(text).

m Mobile Shell Library Version 2.01 11

2. Fundamental Modules c© 2007 infowing AG

print index("To be, or not to be", "to be")
→ 14
print index("To be, or not to be", "to be", 0, true)
→ 0
print index("To be, or not to be", "to be", 1, true)
→ 14
print index("To be, or not to be", "to be or not")
→ -1

See also: .rindex (p. 15)

.isarray

• function isarray(expression)→ Boolean

Returns true if expression is an array, false if it is any other type.

print isarray([])
→ true
print isarray("String")
→ false

.isboolean

• function isboolean(expression)→ Boolean

Returns true if expression is a boolean (i.e. true or false), false if it
is any other type.

print isboolean(4 > 5)
→ true
print isboolean(4+5)
→ false

.isfunction

• function isfunction(expression)→ Boolean

Returns true if expression is a function reference, false if it is any other
type.

12 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.1. Builtin Functions and Constants

print isfunction(&cd)
→ true
print isfunction(cd())
→ false

.isnative

• function isnative(expression)→ Boolean

Returns true if expression is a native object, false if it is any other type.

print isnative(io.create("sample.xml"))
→ true
print isnative([])
→ false

.isnum

• function isnum(expression)→ Boolean

Returns true if expression is a number, false if it is any other type.

print isnum(13.26)
→ true
print isnum("13.26")
→ false
print isnum(num("13.26"))
→ true

.isstr

• function isstr(expression)→ Boolean

Returns true if expression is a string, false if it is any other type.

print isstr("Hello")
→ true
print isstr(null)
→ false

m Mobile Shell Library Version 2.01 13

2. Fundamental Modules c© 2007 infowing AG

.keys

• function keys(array)→ Array

Returns an array of length len(array), with each element set to the string
key of the element at this position in array, or set to null if the element at
this position has no key.

a=["one":1, "two":2, 3, "four":4, 5];
print keys(a)
→ ["one", "two", null, "four", null]

.len

• function len(array)→ Integer

• function len(text)→ Integer

Returns the length (number of elements) of the array array, or the length
(number of characters) of the string text.

print len("Hello")
→ 5
print len("")
→ 0
print len([7, 8, 9])
→ 3
print len([])
→ 0

.lower

• function lower(text)→ String

Returns a copy of text, with all uppercase characters converted to their low-
ercase equivalent.

print lower("Hello")
→ hello
print lower("WATCH OUT!")
→ watch out!

14 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.1. Builtin Functions and Constants

.num

• function num(text)→ Number

Converts the string text representing a numeric value into the value. The
syntax for the number is the same as for numeric literals (see 2.3 (Reference,
p. 7)). Leading and trailing blanks are ignored.

print 21+num(’21’)
→ 42
print num(" -15.8e4 ")
→ -158000

.replace

• function replace(text, old, new)→ String

Replaces all occurences of old in text by new, and returns the string with
replacements made. old and new need not have the same length.

print replace("Hello world!", "l", "ll")
→ Hellllo worlld!"
print replace("Hello world!", "l", "")
→ Heo word!"

.rindex

• function rindex(text, pattern, start=len(text)-1,
folded=false)→ Number

Searches the string text for the last occurence of the string text at or before
start and returns the position. If pattern does not occur, -1 is returned. If
folded=true, the comparison between text and pattern ignores case.
Throws ExcStringPosOutOfRange if not -1 <= start < len(text).

m Mobile Shell Library Version 2.01 15

2. Fundamental Modules c© 2007 infowing AG

print rindex("To be, or not to be", "To be")
→ 0
print rindex("To be, or not to be", "To be", 18, true)
→ 14
print rindex("To be, or not to be", "To be", 13, true)
→ 0
print rindex("To be, or not to be", "to be or not")
→ -1

See also: .index (p. 11)

.sleep

• function sleep(milliseconds)→ null

Pauses execution for (at least) the number of milliseconds (1/1000 of a sec-
ond) before returning. If milliseconds is negative or zero, execution con-
tinues immediately, but other m processes immediately get a chance to run,
before they are preempted by the scheduler.
Throws ExcValueOutOfRange if milliseconds exceeds 2147483 (35
minutes and 47.483 seconds).

sleep(500) // wait for 1/2 s

.split

• function split(text)→ Array

• function split(text, separator)→ Array

With one argument, splits text into words separated by any amount of white
space1.
With two arguments, splits text into substrings at each occurrence of
separator. separator can be of any length.

1White space: a sequence of characters equal to or less than space. This includes tab and
newline.

16 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.1. Builtin Functions and Constants

print split(" To be, or not to be?")
→ [To,be,,or,not,to,be?]
print split("Line 1

Line 3
", "
")
→ [Line 1,,Line 3,]

.str

• function str(expression, width=0)→ String

• function str(number, width, decimals)→ String

Converts an expression or a number to string:

• The first form converts an expression to a string, using the same rules
as the print statement (see 2.7.10 (Reference, p. 27)):

print str(1 < 3)
→ true

– If width >= 0, spaces are added before the string until its length
is at least width. The result is thus right adjusted.

print str(1 < 3, 8)
→ true

– If width < 0, spaces are added after the string until its length is
at least -width. The result is thus left adjusted.

print str("hello", -8) + "world"
→ hello world

• The second form formats number into a fixed or floating point repre-
sentation, depending on decimals:

– If decimals = 0, the number is represented without decimal
positions and without decimal point, as if it were an integer:

print str(10000/7, 6, 0)
→ 1429

m Mobile Shell Library Version 2.01 17

2. Fundamental Modules c© 2007 infowing AG

– If decimals > 0, the number is represented with decimal point
and the given number of decimal positions:

print str(10000/7, 0, 3)
→ 1428.571

– If decimals < 0, the number is represented with floating point
and the given number of significant digits:

print str(10000/7, 10, -3)
→ 1.43E+03
print str(10000/7, 0, -1)
→ 1E+03

.substr

• function substr(text, start)→ String

• function substr(text, start, length)→ String

Extracts a substring from text from position start, either to the end of
text, or the next length characters. The first character has position 0.
Throws ExcStringPosOutOfRange if not 0 <= start <= len(text),
or if not 0 <= length <= len(text) - start.

print substr("Hello world!", 6)
→ world!
print substr("Hello world!", 3, 5)
→ lo wo

.trim

• function trim(text)→ String

Returns a copy of text, with leading and trailing blanks removed.

print trim("Hello")
→ Hello
print trim(" world! ")
→ world!

18 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.2. Module array: Array Functions

.upper

• function upper(text)→ String

Returns a copy of text, with all lowercase characters converted to their up-
percase equivalent.

print upper("Hello")
→ HELLO
print upper("watch out!")
→ WATCH OUT!

Constants

• const version = 2.01

The current version of m. Of course, for a different version this number will
be different from 2.01.

2.2 Module array: Array Functions

This module provides utility functions to create, manipulate, search and sort
arrays.

array.concat

• function concat(array1, array2, ...)→ Array

Concatenates all arguments to a single array and returns it. Any keys of the
arrays are copied to the resulting array. If the same key occurs more than
once, the key will reference the element where it occurred last.

a=[1, 2, "three":3, 4, 5];
b=[7, "eight":8];
c=array.concat(a, b, [9]);
print c, c["eight"]
→ [1,2,3,4,5,7,8,9] 8
print keys(c)
→ [null,null,three,null,null,null,eight,null]

m Mobile Shell Library Version 2.01 19

2. Fundamental Modules c© 2007 infowing AG

array.copy

• function copy(array, start=0)→ Array

• function copy(array, start, length)→ Array

• function copy(array, indices)→ Array

Extracts a copy of array:

• from element start to the end of the array, or length elements,

• if indices is an array, the elements with indices in indices.

Only the array is copied, its elements remain the same (this is only relevant if
the elements are themselves arrays).
Any keys of the copied elements are also copied to the new array.
Throws ExcIndexOutOfRange if not 0 <= start <= len(array),
or if not 0 <= length <= len(array) - start, or if any 0 <=

indices[i] < len(array).

a=[1, 2, "three":3, 4, 5];
print array.copy(a)
→ [1,2,3,4,5]
print array.copy(a, 3)
→ [4,5]
b=array.copy(a, 1, 3);
print b, b["three"]
→ [2,3,4] 3
print array.copy(a, [3, 2])
→ [4, 3]

array.create

• function create(len, initval)→ Array

• function create(len1, len2, ..., lenn, initval)→ Array

Creates a one-dimensional array of length len, or a multi-dimensional array
of arrays, with dimensions len1 x len2 x ... x lenn, with all array
elements set to initval.

20 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.2. Module array: Array Functions

a=array.create(3,3,0); // create a 3x3 matrix of zeros
print a
→ [[0,0,0],[0,0,0],[0,0,0]]
b=array.create(10, "x"); // create an array of ten "x"
print b
→ [x,x,x,x,x,x,x,x,x,x]

array.fill

• function fill(array, val, start=0)→ null

• function fill(array, val, start, length)→ null

Sets the elements of array array to val, from element start to the end of
the array, or length elements.
Throws ExcIndexOutOfRange if not 0 <= start <= len(array), or if
not 0 <= length <= len(array) - start.

a=[1,2,3,4,5];
array.fill(a, 0);
print a
→ [0,0,0,0,0]
array.fill(a, false, 1, 2);
print a
→ [0,false,false,0,0]

array.index

• function index(array, val, start=0)→ Number

Searches the array array for the first element at or after start equal to val,
and returns the index of the element. If there is no such element, returns -1.
Elements are compared using the builtin function .equal (p. 10).
Throws ExcIndexOutOfRange if not 0 <= start <= len(array).

m Mobile Shell Library Version 2.01 21

2. Fundamental Modules c© 2007 infowing AG

a=["To", "be", "or", "not", "to", "be"];
print array.index(a, "be")
→ 1
print array.index(a, "Be")
→ -1
print array.index(a, "be", 2)
→ 5
print array.index(a, "be", 6)
→ -1

See also: array.rindex (p. 25)

array.insert

• function insert(array, pos, element, ...)→ null

Inserts one or more elements into array before position pos. The elements
at or after pos are moved up. The length of array is increased by the number
of elements inserted.
Throws ExcIndexOutOfRange if not 0 <= pos <= len(array).

arr=[29, 18, -4];
array.insert(arr, 2, 17, "x");
print arr
→ [29,18,17,x,-4]

See also: .append (p. 7)

array.isort

• function isort(array, desc=false, mode=raw,
ind=[0,1,...,len(array)-1])→ Array

Sorts the indices ind such that the elements array[ind[i]] are sorted in
ascending order, or in descending order if desc=true, and returns the sorted
indices.
String comparisons are performed according to mode2 (one of array.raw,
array.fold, array.collate).

2This sort is always stable.

22 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.2. Module array: Array Functions

Throws ExcNotComparable if the elements of interest in array are not all
numbers or not all strings.
Throws ExcIndexOutOfRange if any element of ind does not properly in-
dex into array.
See also: array.sort (p. 26), array.copy (p. 20)

a=[412,-302,18,2077,22,149,18];
ind=array.isort(a);
print ind
→ [1,2,6,4,5,0,3]
print array.copy(a, ind)
→ [-302,18,18,22,149,412,2077]
print array.isort(a, true)
→ [3,0,5,4,2,6,1]
a=["To", "be", "or", "not", "to", "be"];
print array.isort(a)
→ [0,1,5,3,2,4]
print array.isort(a, false, array.fold)
→ [1,5,3,2,0,4]
print array.isort(a, false, array.fold, [1,2,3])
→ [1,3,2]

array.leindex

• function leindex(arr, val, mode=raw)→ Number

Searches the sorted array arr for the first index of the largest element
less than or equal to val. Comparisons use the specified mode (one of
array.raw (p. 27), array.fold, array.collate).
Returns -1 if all elements of arr are larger than val.
Since the array is sorted, searching can be performed much more efficiently
than with an unsorted array. The difference is however only noticable for
relatively large arrays (around 100 elements or more).

m Mobile Shell Library Version 2.01 23

2. Fundamental Modules c© 2007 infowing AG

a=[412,-302,18,2077,22,149,18,21];
array.sort(a);
print a
→ [-302,18,18,21,22,149,412,2077]
print array.leindex(a, 22)
→ 4
print array.leindex(a, 3000)
→ 8
print array.leindex(a, -3000)
→ -1
print array.leindex(a, 18)
→ 1

array.new

• function new(size=0, foldedkeys=false)→ Array

Creates a new array of length 0, with pre-allocated capacity for up to size

elements.
For large arrays, pre-allocating the correct size is considerably more efficient.
It avoids reallocating and copying the array contents, and it ensures the ar-
ray being of minimal size. On the other hand, besides effects on memory
needs and runtime, pre-allocating an array will never change the result of any
computation in m.
If foldedkeys=true, the string keys of the array are compared folded, i.e.
are not case sensitive. This is the only way of creating an associative array
with keys that are not case sensitive.

a=array.new(1000);
for i=1 to 1000 do
a=append(a, i) // will never allocate memory

end;
a=array.new(); // same as a=[]
print a
→ []
a=array.new(5, true); // keys of a ignore case
a["one"] = 1;
a["ONE"] = 2;
print a, keys(a)
→ [2] [one]

24 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.2. Module array: Array Functions

array.remove

• function remove(array, start, length=1)→ null

• function remove(array, key)→ null

Removes one or several elements from array. The elements after the re-
moved one(s) are shifted accordingly, and the length of array is reduced by
the number of removed elements.
The first form removes a region of length length, starting at start. It
throws ExcIndexOutOfRange if not 0 <= start <= len(array), or if
not 0 <= length <= len(array) - start.
The second form removes the single element with string key key. It throws
ExcNoSuchKey if this key does not exist.

a=["one":1, "two":2, 3, "four":4, 5];
array.remove(a, 3);
print a, keys(a)
→ [1,2,3,5] [one,two,null,null]
array.remove(a, "one");
print a, keys(a)
→ [2,3,5] [two,null,null]
array.remove(a, 0, 3);
print a, keys(a)
→ [] []

array.rindex

• function rindex(array, val, start=len(array)-1)→
Number

Searches the array array for the first element at or before start equal to
val, and returns the index of the element. If there is no such element, returns
-1. Elements are compared using the builtin function .equal (p. 10).
Throws ExcIndexOutOfRange if not -1 <= start < len(array).

m Mobile Shell Library Version 2.01 25

2. Fundamental Modules c© 2007 infowing AG

a=["To", "be", "or", "not", "to", "be"];
print array.rindex(a, "be")
→ 5
print array.rindex(a, "Be")
→ -1
print array.rindex(a, "be", 4)
→ 1
print array.rindex(a, "be", 0)
→ -1

See also: array.index (p. 21)

array.sort

• function sort(array, desc=false, mode=raw)→ null

Sorts the array array in ascending order, or in descending order if
desc=true. String comparisons are performed according to mode 3 (one
of array.raw, array.fold, array.collate, see below).
Throws ExcNotComparable if the elements are not all numbers or not all
strings.
See also: array.isort (p. 22)

a=[412,-302,18,2077,22,149,18];
array.sort(a);
print a
→ [-302,18,18,22,149,412,2077]
array.sort(a, true);
print a
→ [2077,412,149,22,18,18,-302]
a=["To", "be", "or", "not", "to", "be"];
array.sort(a);
print a
→ [To,be,be,not,or,to]
array.sort(a, false, array.fold);
print a
→ [be,be,not,or,To,to]

3Sorting is not stable if mode#raw.

26 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.3. Module files: File and Directory Access

array Constants

• const collate = 2 This mode correctly compares accents and um-
lauts, depending on the current locale.
• const fold = 1 This mode ignores case when comparing.
• const raw = 0 This mode directly compares 16-bit character codes.

2.3 Module files: File and Directory Ac-
cess

This module provides access to files and directories of the underlying op-
erating system, including a function to send a file via different messaging
interfaces (“send as”).
To read and write files, use module io (p. 35).
If not absolute, pathes are always relative to the current directory. See also
section 1.2 (p. 4).
Some functions of this module allow the use of file patterns: these
may contain the wildcards * matching any number of characters,
and ’?’ matching a single character. For instance, the pat-
tern d:\documents\mShell*Test.* matches any file in directory
\documents\mShell on drive D: whose name ends with Test.
Many of the functions in this module can render a mobile phone completely
unusable, e.g. by deleting system configuration data, or by overwriting sen-
sitive files. Make sure you regularly back up your mobile phone, and inform
yourself how to reset your phone to factory status. You have been warned!

files.attr

• function attr(path)→ Number

Permissions: Read(path)

• function attr(path, newattr)→ Number

Permissions: Read+Write(path)

Gets or sets the attribute bits of a file. With one argument, returns the attribute

m Mobile Shell Library Version 2.01 27

2. Fundamental Modules c© 2007 infowing AG

bits of the file or directory path. With two arguments, returns the old file
attributes, and sets the new attributes of path.
The attribute bits define the characteristics of a file:
• const arch = 32 File or directory has the archive bit set.
• const dir = 16 Path references a directory.
• const hidden = 2 File or directory is hidden (invisible).
• const ro = 1 File or directory is read-only.
• const sys = 4 File or directory has the system bit set.
• const all = 55 All attribute bits set.
The status of the files.dir attribute cannot be changed.
Use the bitwise or operator | to combine single bits; use the bitwise and
operator & to check for single bits.

// make the file "secret.dat" read-only and invisible
files.attr("secret.dat", files.ro | files.hidden);
// check whether a path is a directory
print
files.attr("c:\\documents\\mShell") & files.dir # 0

→ true

See also: files.scan (p. 32)

files.copy

• function copy(srcpattern, destdir, recursive=false)→
Number

/r:recursive

Permissions: Read(srcpattern)+Write(destdir)

Copies a file or all files matching srcpattern to another directory destdir.
If recursive=true, or /r is specified in interactive mode, also copies all
files matching the file part of srcpattern in all subdirectories of the di-
rectory part of srcpattern, and creates the corresponding subdirectories in
destdir.
Returns the number of files copied.
In interactive shells, this function is available as cp.

28 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.3. Module files: File and Directory Access

print files.copy("secret.dat", "d:\\")
→ 1
// copy all m scripts from drive C: to drive D:
files.copy("c:\\documents\\mShell*.m",

"d:\\documents\\mShell", true)

m>cp c:\documents\mShell*.m d:\documents\mShell/r

The last two statements (the second in interactive mode) are equivalent.

files.delete

• function delete(pattern, recursive=false)→ Number

/r:recursive

Permissions: Write(pattern)

Deletes a file or all files matching pattern. If recursive=true, or /r is
specified in interactive mode, also deletes all files matching the file part of
pattern in all subdirectories of the directory part of pattern.
Returns the number of files deleted.
In interactive shells, this function is available as del.

print files.delete("secret.dat");
→ 1
// delete all m scripts from drive C:
files.delete(""c:\\documents\\mShell*.m", true)

m>del c:\documents\mShell*.m/r

The last two statements (the second in interactive mode) are equivalent.
See also: files.rmdir (p. 31)

files.edit

• function edit(path, cursor=0)→ null

Permissions: Read+Write(path)

Loads the file path into the builtin editor, and shows the editor. Any previ-
ously loaded file (e.g. a script being edited) will be saved first. The cursor

m Mobile Shell Library Version 2.01 29

2. Fundamental Modules c© 2007 infowing AG

is moved to position cursor in the file. The character encoding applied is
determined by the encoding property (see A.3 (Reference, p. 57)).
In interactive shells, this function is available as edit.

// edit an XML file
files.edit("\\documents\\MMS\\Sample.xml")

files.exists

• function exists(path)→ Boolean

Permissions: Read(path)

Returns true if the file or directory denoted by path exists, false if there
is no such file or directory.

print files.exists("c:\\documents\\mShell")
→ true

files.mkdir

• function mkdir(path, all=false)→ null

/a:all

Permissions: Write(path)

Create a new directory path. path can be relative to the current directory, or
absolute. See also section 1.2 (p. 4).
If all=false, mkdir creates just one directory. If all=true, or /a is spec-
ified in interactive mode, all directories down to the last in path are created,
as necessary.
In interactive shells, this function is available as md.

mkdir("subdir");
mkdir("..\\otherdir");
mkdir("c:\\documents\\mShell", true)

m>md c:\documents\mShell/a

The last two statements (the second in interactive mode) are equivalent.

30 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.3. Module files: File and Directory Access

files.move

• function move(srcpattern, destpath, recursive=false)→
Number

/r:recursive

Permissions: Read+Write(srcpattern), Write(destdir)

Moves a file or all files matching srcpattern to another directory destdir.
If recursive=true, or /r is specified in interactive mode, also moves all
files matching the file part of srcpattern in all subdirectories of the direc-
tory part of srcpattern, removes and creates the corresponding subdirecto-
ries in destdir.
Returns the number of files moved.
In interactive shells, this function is available as mv.

print files.move("secret.dat", "d:\\")
→ 1
// move all m scripts from drive C: to drive D:
files.move("c:\\documents\\mShell*.m",

"d:\\documents\\mShell", true)

m>mv c:\documents\mShell*.m d:\documents\mShell/r

The last two statements (the second in interactive mode) are equivalent.

files.rename

• function rename(oldfile, newfile)→ null

Permissions: Write(oldfile)+Write(newfile)

Renames the file or directory oldfile to newfile. This function does not
support wildcards.

files.rename("secret.dat", "topsecret.dat")

files.rmdir

• function rmdir(path, recursive=false)→ Number

/r:recursive

m Mobile Shell Library Version 2.01 31

2. Fundamental Modules c© 2007 infowing AG

Permissions: Write(path)

Removes the directory path. If recursive=false, the directory must be
empty before it can removed. If recursive=true, or /r is specified in
interactive mode, the directory with all its contents and subdirectories will be
removed.
Returns the number of directories and files removed.
In interactive shells, this function is available as rd.

print rmdir("subdir")
→ 1
rmdir("..\\otherdir");
rmdir("c:\\myfiles\\images", true)

m>rd c:\myfiles\images/r
→ (number of items removed)

The last two statements (the second in interactive mode) are equivalent: they
both remove the directory images with all its contents.

files.roots

• function roots()→ Array

Returns an array with all accessible file system roots (drives).

print files.roots()
→ [A:,C:,D:,Z:]

files.scan

• function scan(pattern, attr=0, mask=files.dir |
files.hidden | files.sys)→ Array

Permissions: Read(pattern)

Returns an array with all directory entries whose name matches pattern and
whose attribute bits defined by mask match attr: a file path matches if
files.attr(path) & mask = attr & mask.
Example values for attr and mask:

32 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.3. Module files: File and Directory Access

• The default values exclude directories, hidden and system files.

• attr=files.dir returns only directories.

• mask=0 ignores all attributes and thus returns all entries.

• attr=files.ro and mask=files.ro return only read only files and
directories.

• attr=files.arch and mask=files.dir|files.arch return only
files with the archive bit set.

The file names returned do not contain the directory part defined by pattern,
and are sorted by name.

// search the application directory for DLL files
print files.scan(system.appdir+"*.dll")
→ [Array_mm.dll,Audio_mm.dll,...]
// search the document directory for hidden files only
print files.scan(system.docdir+"*",files.hidden)
→ [10204299.act]

files.send

• function send(path, subject=null)→ null

Permissions: Read(path)

Compatibility of function files.send

Nokia phones before Symbian 8 Call is ignored

Sends the file path over a messaging channel chosen by the user (“Send as”).
Channels typically include Bluetooth, MMS, and e-mail. The recipient and
other channel dependent message details will be specified interactively.
subject is the subject of the message (if applicable). If subject=null, it
defaults to path without the directory component.
In interactive shells, this function is available as send.

// send a script file
files.send(system.docdir+"coolgame.m",

"The cool game I promised")

m Mobile Shell Library Version 2.01 33

2. Fundamental Modules c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

files.size

• function size(path)→ Number

Permissions: Read(path)

Returns the size in bytes of the file denoted by path. Returns 0 if path
denotes a directory.

print files.size(system.appdir+"Audio_mm.dll")
→ 2956

files.time

• function time(path)→ Number

Permissions: Read(path)

• function time(path, newtime)→ Number

Permissions: Read+Write(path)

Gets or sets the time when the file or directory denoted by path has been
created or modified. The time is in seconds since midnight on January 1st
of year 0. With one argument, returns the modification time of the file or
directory path. With two arguments, returns the old modification time, and
sets the new time.

print files.time("c:\\documents\\mShell")
→ 63276033444

See also module time (p. 48).

34 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.4. Module io: File and Stream Input/Output

2.4 Module io: File and Stream In-
put/Output

This module provides functions to read and write files or communication
streams via the underlying operating system.
Some of the functions in this module can render a mobile phone completely
unusable, e.g. by overwriting sensitive files. Make sure you regularly back up
your mobile phone, and inform yourself how to reset your phone to factory
status. You have been warned!
Before file operations can be performed, a file has to be opened for reading or
reading and writing. Opening a file returns a stream object which identifies
the file for subsequent operations. When file operations are completed, the
file should be closed4.

// open the standard autoexec.m script
f=io.open(system.appdir + "autoexec.m");
// read the first 28 bytes (characters)
s=io.read(f, 28);
print s;
→ /*

Default autoexec script
// close the file
io.close(f)

There are two special files:
• const stdin = standard input Reads from the console.
• const stdout = standard output Writes to the console5

A file always has a character encoding scheme (CES) it uses when reading or
writing UNICODE R© characters. The following encoding schemes exist:
• const raw = 0

Only the low byte of each character is read or written, the high byte is as-
sumed zero. The number of bytes written corresponds exactly to the number
of characters. This is a good CES for reading and writing Latin characters,

4When an m script finishes or is closed, all its open streams are also closed. An open stream
is also closed when it is no longer referenced and reclaimed by the garbage collector.

5io.stdin and io.stdin represent the same stream; it exists under two different
names for historical reasons.

m Mobile Shell Library Version 2.01 35

http://www.unicode.org

2. Fundamental Modules c© 2007 infowing AG

and the default CES.
• const utf8 = 1

Characters are encoded using UTF-8. This is a compact variable length en-
coding properly encoding all characters, but the number of bytes written is not
easily predictable. Reading with the UTF-8 CES throws ExcInvalidUTF8
if a character sequence not conforming to the UTF-8 standard is encountered.
• const utf16le = 2

Characters are encoded using UTF-16 LE (little endian, low byte first). Each
character is read or written as two bytes, the number of bytes written is there-
fore twice the number of characters.
• const utf16be = 3

Like utf16le, but characters are encoded using UTF-16 BE (big endian,
high byte first).
• const bom = 0xfeff

This is a pseudo-encoding scheme which will determine the real scheme to
use depending on the next one to three bytes read. These bytes are analyzed
whether they form a BOM (Byte Order Mark) in any given encoding. If there
is a BOM, the CES will be set accordingly, and actual reading will start with
the data following the BOM. If there is no BOM or the necessary bytes are
not available, the CES will be set to raw.
To write a BOM to a stream s in its current encoding scheme, use the follow-
ing statement:

if io.ces(s)#io.raw then
io.write(s, char(io.bom))

end

io.append

• function append(path, ces=io.raw)→ Native Object

Permissions: Read+Write(path)

Opens a file to append to it, and returns its stream object. If the file exists, it
is opened for read and write access, and the file pointer is set to its end. If the
file doesn’t exist, this call is equivalent to io.create (p. 38).
If the file already exists, it is truncated to zero length.

36 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.4. Module io: File and Stream Input/Output

Throws ErrPathNotFound if the directory does not exist.

f=io.append("activity.log");
// file pointer is at the end
print io.size(f), io.seek(f,0,true)
→ 1813 1813
io.close(f)

io.avail

• function avail(stream)→ Number

Returns the number of bytes which can be read without blocking. For disk
files, this is normally the number of bytes to the end of the file.
For io.stdin, this is the number of characters which can be read without
changing to input mode, i.e. calling a reading function: console input is nor-
mally only accepted during a read on io.stdin (when the state icon is
shown). See ui.keys (p. 82) for information on removing this restriction.

// read all remaining console input
len=io.avail(io.stdin);
s=io.read(io.stdin, len)

io.close

• function close(stream)→ null

Flushes and closes the file stream. Attempts to close io.stdin or
io.stdout are ignored.
See also io.flush (p. 38).

io.ces

• function ces(stream)→ Number

• function ces(stream, scheme)→ Number

Gets or sets the character encoding scheme of a file. With one argument,
returns the current CES of the file stream. With two arguments, returns the

m Mobile Shell Library Version 2.01 37

2. Fundamental Modules c© 2007 infowing AG

old CES, and sets the CES of stream to scheme.
Throws ErrAccessDenied when attempting to change the CES of
io.stdin or io.stdout.

io.create

• function create(path, ces=io.raw)→ Native Object

Permissions: Write(path)

Creates a new, empty file in the directory and with the name specified by
path, and returns its stream object. The initial CES is set to ces. The file is
opened for read and write access.
If the file already exists, it is truncated to zero length.
Throws ErrPathNotFound if the directory does not exist.

f=io.create("sample.xml", io.utf8);
print f
→ 2
io.close(f)

io.flush

• function flush(stream)→ Boolean

• function flush(stream,auto)→ Boolean

With one argument flushes the file stream, i.e. writes any pending data to the
underlying file or communication stream, and returns the auto flush state.
With two arguments, enables (auto=true) or disables (auto=false) auto
flushing, and returns the previous setting.
If auto flushing is enabled, the file will be flushed after each io.write...

and io.print... call. For optimum performance when writing a lot of
data, auto flushing should be disabled.
If a file has auto flushing enabled, calling io.flush to flush the file is never
required.
By default, auto flushing is enabled.

38 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.4. Module io: File and Stream Input/Output

// disable auto flushing before writing a lot of data
old=io.flush(f, false);
for line in lines do
io.writeln(f, line)

end;
// restore the previous auto flush state
io.flush(f, old)

io.open

• function open(path, rw=false, ces=io.raw)→ Native
Object

Permissions: Read(path) / Read+Write(path)

Opens an existing file in the directory and with the name specified by path,
and returns its stream object. The initial CES is set to ces. If rw=false,
the file is opened for read access, and attempts to write to it will throw
ErrAccessDenied. If rw=true, the file is opened for read and write ac-
cess.
Throws ErrPathNotFound if the directory does not exist, and
ErrNotFound if the file does not exist.

f=io.open("sample.xml", false, io.utf8);
print f
→ stream@41255c
io.close(f)

io.print

• function print(stream, expression, ...)→ null

Writes a list of expressions as strings to file stream, using the current char-
acter encoding scheme. The expressions are converted to strings according to
the rules in section 2.7.10 (Reference, p. 27). The strings are written one after
the other, without separators or a terminator string.

old=13;
io.print(io.stdout, "old=", old, ", new: ");
→ old=13, new:

m Mobile Shell Library Version 2.01 39

2. Fundamental Modules c© 2007 infowing AG

io.println

• function println(stream, expression, ...)→ null

Like io.print, but also writes a newline (CR and LF characters) after writ-
ing all arguments.

io.read

• function read(stream, len)→ String|null

Reads from stream until len characters have been read, or the file end has
been reached, and returns the characters read as a string.
len determines the number of characters read, not the number of bytes: with
encoding schemes different from io.raw, the number of bytes read may be
greater than len.
Advances the file pointer by the number of bytes read. Returns null if the
file pointer is already at the end of stream. Reading from io.stdin never
returns null, as the user is prompted for new data if there is no data to read.

f=io.open("Hello.mp3");
// read first three bytes of MP3 file
print io.read(f, 3);
→ ID3
io.close(f)

See also: .code (p. 8)

io.readln

• function readln(stream, len=256)→ String|null

Reads from stream until len characters have been read, or until the next
end of line has been reached6, and returns the characters read as a string. The
string returned does not contain the end of line mark.
len determines the number of characters read, not the number of bytes: with
encoding schemes different from io.raw, the number of bytes read may be
greater than len.

6end of line is marked by CR-LF, LF, or CR.

40 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.4. Module io: File and Stream Input/Output

Advances the file pointer by the number of bytes read. Returns null if the
file pointer is already at the end of stream.

f=io.open(system.appdir + "autoexec.m");
// read the first three lines
for i=1 to 3 do
print io.readln(f)

end
→ /*

Default autoexec script for interactive shells.

(c) 2005 infowing AG, CH-8703 Erlenbach
io.close(f)

io.readm

• function readm(stream,old3rd=false)→ anytype

Reads the next m data item from stream, and returns it. The data must have
been written using io.writem (p. 44).
Advances the file pointer by the number of bytes read.
The current encoding scheme does not affect how the input data is interpreted.
If old3rd=true, data is assumed to be in the (wrong) format written by
Symbian 3rd Edition devices with m versions prior to 2.01. Under normal
circumstances, this parameter is not used.
Throws ErrEof if end of file is reached during reading. Throws ErrCorrupt
if the data in the file is invalid.
See io.writem (p. 44) for an example.

io.seek

• function seek(stream, pos, current=false)→ Number

Sets the file pointer position of file stream to pos. If current=false, pos
is an absolute position and must not be negative. If current=true, pos is
relative to the current position and may also be negative.
The file pointer position is always in bytes, independent of the current char-

m Mobile Shell Library Version 2.01 41

2. Fundamental Modules c© 2007 infowing AG

acter encoding scheme.
Returns the new absolute file position.

io.seek(f, 0); // seek to beginning of file
io.seek(f, io.size(f)); // seek to end of file
io.seek(f, -40, true)); // rewind 40 bytes
current=io.seek(f, 0, true); // get current position

io.size

• function size(stream)→ Number

Returns the size of file stream, in bytes.
See also: files.size (p. 34)

io.timeout

• function timeout()→ Number

• function timeout(ms)→ Number

Gets or sets the timeout used in reads and writes. Without an argument, re-
turns the current timeout in milliseconds. With one argument, returns the
old timeout, and sets the new timeout to ms. Setting the timeout to zero (the
default) or a negative value disables timeouts, i.e. I/O operations can block
indefinitely.
Throws ExcValueOutOfRange if ms exceeds 2147483 (35 minutes and
47.483 seconds).
The timeout is used in all following reads and writes: whenever an opera-
tion does not complete within the given number of milliseconds, it throws
ErrTimedOut.

42 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.4. Module io: File and Stream Input/Output

// give the user three seconds to input data
io.timeout(3000);
try
s=io.readln(io.stdin)
// process input

catch e by
// if it wasn’t a timeout, rethrow e
if index(e, "ErrTimedOut") # 0 then throw e end;
print "You waited too long..."

end

io.wait

• function wait(streams)→ Native Object

Waits until at least one stream in the array streams has at least one byte
to read from (i.e. io.avail (p. 37) returns a value greater than zero), and
returns this stream.
io.wait is most useful when simultaneously processing several input
streams (TCP/IP, Bluetooth, IPC), as it avoids the need for a “busy waiting
loop”.

ipconn=...
btconn=...
case io.wait([io.stdin, ipconn, btconn])
in io.stdin:
// read from the console

in ipconn:
// read from ipconn

in btconn:
// read from btconn

end

io.write

• function write(stream, string)→ null

Writes the string string to file stream, using the current character encoding
scheme.

m Mobile Shell Library Version 2.01 43

2. Fundamental Modules c© 2007 infowing AG

f=io.create("sample.txt", io.utf8);
s="un château français";
io.write(f, s);
print len(s), io.size(f)
→ 19 21

io.writeln

• function writeln(stream, string)→ null

Writes the string string, followed by a newline (CR and LF characters) to
file stream, using the current character encoding scheme.

f=io.create("sample.txt", io.utf8);
s="un château français";
io.writeln(f, s);
print len(s), io.size(f)
→ 19 23

io.writem

• function writem(stream, data)→ null

Writes data to file stream, so it can be read back in via io.readm (p. 41).
data can have any m type: number, string, boolean, array, or null. Function
references and native objects can neither be written nor read.
If data is an array, elements of it (or its subarrays) which are referenced
multiple times are only written once and correctly resolved when they are read
back in. This permits to properly write (“serialize”) recursive data structures
(which in m are always arrays with elements referencing the array itself).
The current encoding scheme does not affect the raw data written.
Throws ErrArgument if data is of a type which cannot be written.

44 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.5. Module system: System Related Functions

// write a string
data1="Simply a string";
// and a more complex data structure
data2=["One":1, "Two":2.5, false, null, "V":[8,9,10]];
f=io.create("sample.dat");
io.writem(f, data1);
io.writem(f, data2);
io.close(f);
// read it back in
f=io.open("sample.dat");
print io.readm(f)
→ Simply a string
a=io.readm(f);
print a, keys(a)
→ [1,2.5,false,null,Array<3>] [One,Two,null,null,V]
io.readm(f)
→ ErrEof thrown

2.5 Module system: System Related Func-
tions

This module provides mainly information about the m runtime system and
the device m is running on. Its functions are not guaranteed to portable, as
they are tied to the Symbian OS platform.

system.gc

• function gc()→ Number

Explicitly request garbage collection, reclaiming unused memory of this pro-
cess.

system.hal

• function hal(index)→ Number

• function hal(index, value)→ Number

Obtain device specific information. With one argument, returns the value of

m Mobile Shell Library Version 2.01 45

http://www.symbian.com

2. Fundamental Modules c© 2007 infowing AG

attribute number index. With two arguments, sets the the value of attribute
number index, and returns the old value.
Throws ErrNotSupported if the attribute cannot be read (or modified).
Please refer to Symbian OS documentation for a complete list of attributes.
The following table just lists a few:

Index Meaning
5 Machine UID

11 CPU frequency in kHz
31 Display width in pixels
32 Display height in pixels
35 Display colors
68 System language: 1=english, 2=french, 3=german, ...
72 System drive: 0=A:, 1=B:, 2=C:, ...

system.mem

• function mem()→ Number

• function mem(expression)→ Number

The first form returns the size of memory for data used by m, and all its
processes. This includes the 60 to 100 kBytes of application memory.
The second form returns the size of memory allocated to expression, or
what would be reclaimed if expression were no longer used.

print system.mem()
→ 91984
system.gc(); // collect all garbage
print system.mem(array.create(40, 40, 0))
→ 13964
print system.gc() // reclaim array
→ 13956

system.verbosegc

• function verbosegc()→ Number

• function verbosegc(level)→ Number

Gets and sets the verbosity level of garbage collection:

46 m Mobile Shell Library Version 2.01

http://www.symbian.com

c© 2007 infowing AG 2.5. Module system: System Related Functions

0 Garbage collection works silently. This is the default.
1 Whenever garbage collection occurs, a short message with the

size of the space reclaimed is printed on the console.
2 Whenever garbage collection occurs, a long message with the

size and number of cells of the space in use and the space re-
claimed is printed, together with the total data memory in use by
m.

system.verbosegc(2);
for i=1 to 5 do
a=array.create(100, 100, 0)

end;
→ GC: used=81K/104, freed=0K/0, total=133K

GC: used=162K/205, freed=0K/0, total=214K
GC: used=162K/205, freed=81K/202, total=214K
GC: used=162K/205, freed=81K/202, total=214K
GC: used=162K/205, freed=81K/202, total=214K

system Constants

• const appdir = c:\system\apps\mShell\|

c:\private\a0002f97\

The directory where the m application files are stored.
• const caps = basic | extended | all

The capabilities granted to this process by the operating system’s security
platform. Most m functions and constants require only basic capabilities.
The exceptions are marked accordingly. See section 5.1 (Reference, p. 49)
for details about capabilities under Symbian OS.
• const dev = Device (version)

The device type and, in parentheses, the manufacturer software version. If the
device name is just a hexadecimal number (e.g. 0x101fb2ae), please add a
bug report citing this number and indicating the device type.
• const docdir = c:\documents\mShell\| c:\Media

files\document\mShell\

The directory where the m document files (scripts and module sources) are
stored.
• const os = Symbian | Symbian 3rd

m Mobile Shell Library Version 2.01 47

http://www.symbian.com

2. Fundamental Modules c© 2007 infowing AG

The operating system of the device.
• const platform = S60 | UIQ

The (Symbian) platform of the device.

2.6 Module time: Time and Date Functions

This module provides access to the real time clock. A given point in time in
m is always measured as the number of seconds since the beginning of year
0 (assuming the Gregorian calendar).

time.dayofweek

• function dayofweek(secs=time.get())→ Number

Gets the day of the week of the point in time defined by secs, according to
the following table:

0 Monday
1 Tuesday
2 Wednesday
3 Thursday
4 Friday
5 Saturday
6 Sunday

print time.dayofweek()
→ 0
print time.dayofweek(time.num(’2005-05-13’))
→ 4

time.get

• function get()→ Number

Gets the local time in seconds since 0000-01-01 00:00:00. The numeric res-
olution is down to microseconds, but the actual resolution may be be coarser.

48 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.6. Module time: Time and Date Functions

print time.get()
→ 63279080895
print str(time.get(), 1, 4)
→ 63279080895.9844

See also: .date (p. 9)

time.set

• function set(secs)→ null

Sets the local time in seconds since 0000-01-01 00:00:00 to secs.

time.set(time.get() + 60*60) // advance by 1 hour

time.num

• function num(text, format="YMDhmst")→ Number

Converts the string text into seconds since 0000-01-01 00:00:00, according
to the format format.
The format string defines the order of the date and time parts in text. Each
part finishes if either a character which is not a digit is encountered, or if the
part’s maximum length is reached. The parts are denoted by the following
characters:

Character Max. length Meaning
Y 4 Year.
M 2 Month.
D 2 Day.
h 2 Hour (24 hour representation).
m 2 Minute.
s 2 Second.
t 3 Fraction of a second.

One and two digit years are assumed to be in the 21st century, i.e. 2000 is
added to them.
Throws ErrArgument if format contains a character other than those above.

m Mobile Shell Library Version 2.01 49

2. Fundamental Modules c© 2007 infowing AG

print time.get(), time.num(date())
→ 63279080895 63279080895
t=time.num("05-03-27")-40*24*3600;
print time.str(t)
→ 2005-02-15 00:00:00
t=time.num(’19:14:18.5’, ’hmst’)+124.7
print time.str(t,’hh:mm:ss:ttt’)
→ 19:16:23.200

See also: time.str (p. 50)

time.str

• function str(secs, format="YYYY-MM-DD hh:mm:ss")→
String

Converts the seconds since 0000-01-01 00:00:00 secs into a string, accord-
ing to the format format.
Each character in the format string will be converted into a character in the
resulting string, according to the following table:
Y Next digit of year
M Next digit of month
D Next digit of day
h Next digit of hour
m Next digit of minute
s Next digit of second
t Next digit of fractions of second

The format is converted from right to left, except for t.

print date(), time.str(time.get())
→ 2005-03-14 18:28:15 2005-03-14 18:28:15
print time.str(time.get(), "hh:mm:ss.ttt")
→ 18:28:15.424
print time.str(time.get(), "DD.MM.YY")
→ 14.03.05

See also: time.num (p. 49), .date (p. 9)

50 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.7. Module zip: ZIP Archives

time.utc

• function utc()→ Number

Gets the real time in the UTC (Universal Time Coordinate) time zone. This
equals Greenwich local time, excluding any shift by daylight saving time.
The difference between local time and UTC time is the local time zone:

print time.get() - time.utc()
→ 3600

time.weekofyear

• function weekofyear(secs=time.get())→ Number

Gets the week of the year of the point in time defined by secs. The first week
in the year is the first week having four or more days in the year defined by
secs.

print time.weekofyear()
→ 11
print time.weekofyear(time.num(’2005-01-01’))
→ 53

2.7 Module zip: ZIP Archives

This module provides read access to ZIP (PKZIP) archive files. Archive mem-
bers are extracted via ordinary stream objects, to be passed to functions in
module io (p. 35).
For instance, the following function extracts all members in a ZIP archive
matching a given pattern into the current directory (the default pattern extracts
all members). Note that the code does not create any required directories, nor
correctly distinguishes between directories and files.

m Mobile Shell Library Version 2.01 51

2. Fundamental Modules c© 2007 infowing AG

function unzip(name, pattern=null)
z=zip.open(name);
for f in zip.scan(z, pattern) do
print "Extracting",f["name"];
i=zip.extract(z, f["name"]);
o=io.create(f["name"]);
b=io.read(i, 256);
while b#null do
io.write(o, b); b=io.read(i, 256)

end;
io.close(i); io.close(o)

end;
zip.close(z)

end

zip.close

• function close(zipfile)→ null

Closes the ZIP archive zipfile previously opened with zip.open.

zip.extract

• function extract(zipfile, name)→ Native Object

Opens a stream to extract the member name from the ZIP archive zipfile,
and returns it. zipfile must have been previously opened with zip.open.
name is semi-case sensitive: if a member with the same name observing case
exists, it is returned, otherwise a member with the same name ignoring case
is returned.
Throws ErrNotFound if there is no such member.
The returned stream can be accessed with most functions from module io

(p. 35):

• io.read, io.readln, and io.readm read data,

• io.size gets the total number of bytes,

• io.avail gets the number of bytes remaining,

52 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 2.7. Module zip: ZIP Archives

• io.close closes the stream,

• io.ces gets and sets the character encoding scheme. As with files, the
default is io.raw.

zip.open

• function open(file)→ Native Object

Permissions: Read(file)

Opens the ZIP archive with file name file, and returns an object to access
it. The object should be closed with zip.close if it is no longer needed.
Throws ErrNotFound if there is no such archive, and ErrCorrupt if the
archive is not valid.

zip.scan

• function scan(zipfile,name=null)→ Array

Scans the ZIP archive zipfile for all members matching name. name is
not case sensitive and can contain the wildcards * and ?. If name=null, all
members are returned.
Returns an array with one element for each member found, each element
being an array with the following keys:

Key Meaning Type
name Member name String
size Uncompressed size Integer
csize Compressed size Integer
crc CRC-32 checksum Integer

z=zip.open(’ZipTest.zip’)
for f in zip.scan(z, ’*AudioTest.*’) do
print f

end
→ [tests\AudioTest.mid,1983,510,2487703623]

[tests\AudioTest.mm,2416,952,1954653783]

m Mobile Shell Library Version 2.01 53

2. Fundamental Modules c© 2007 infowing AG

54 m Mobile Shell Library Version 2.01

c© 2007 infowing AG

3. User Interface

3.1 Module graph: Screen Graphics

This module supports drawing of arbitrary two-dimensional graphic objects
and images from files on the screen. The module has its own view, which can
be shown or hidden under programmatic control. When shown, it appears on
top of the normal console window and hides it.
The view supports two modes: “console mode”, with the view covering the
area of the m console, and “full screen mode”, with the view covering the
entire screen. The default mode is “console”, but it can be changed any time
by graph.full (p. 62).
By default, the drawing area’s size (“canvas” size) corresponds to the con-
sole’s size, but it can be changed to any size which fits into memory via the
graph.size (p. 74) function. If the canvas is bigger than the view, the ori-
gin of the view on the canvas can be specified via the graph.show (p. 73)
function.
Graphic objects are added by calling the corresponding functions, and are
drawn in the order they have been added: objects added later are drawn over
objects added earlier. Objects are not drawn until graph.show (p. 73) is
called, or the operating system requests redrawing.

Coordinates

Position and size of graphic objects are given by coordinates. This mod-
ule supports two modes for specifying coordinates (see also graph.scale

(p. 72)):

• Unscaled, with the unit being a single screen pixel, defining the area
to draw on as a rectangle of integer width and height. Following con-
ventions for pixel coordinates, y=0 is at the top of the rectangle, and y

increases downwards.

m Mobile Shell Library Version 2.01 55

3. User Interface c© 2007 infowing AG

• Scaled, normalizing the rectangle to draw on as a square with sides
of length 1, and an additional rectangle on the right for x>1 (typically
on Series 60 devices), or at the bottom for y<0 (typically on UIQ de-
vices). Following conventions for mathematical coordinates, y=0 is at
the bottom of the square, and y increases upwards.

Unscaled (pixels) Scaled (unit square)

(0,h)

(0,0) (w,0)

(0,0)
(1,0)

(0,1)

Colors

Colors for the graphic are expressed as RGB, i.e. as the three intensities of
red, green and blue. In m, there are two ways to specify an RGB value:

• As an array of three color intensities between 0 and 1. For instance,
[0.5,0,0.5] specifies a dark magenta (50% red and 50% blue).

• As an integer encoding the three color intensities between 0 and 255
as red shl 16 | green shl 8 | blue. This is typically written
in hexadecimal notation as 0xrrggbb. For instance, 0x800080 is (after
rounding) equivalent to [0.5,0,0.5].

Eight standard colors are predefined as module constants:
• const black = 0x000000

• const white = 0xffffff

• const red = 0xff0000

56 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.1. Module graph: Screen Graphics

• const green = 0x00ff00

• const blue = 0x0000ff

• const yellow = 0xffff00

• const cyan = 0x00ffff

• const magenta = 0xff00ff

The view itself has a background color (set via graph.bg (p. 58)), which
initially is white. Graphic items drawn on the background generally have two
colors:

• The pen color defines the color in which lines, texts and outlines are
drawn. It can also be set to false, so no outlines are drawn. It is
initially black, and set via graph.pen (p. 68).

• The brush color defines the color by which areas are filled. It can also
be set to false, so areas are not filled. It is initially false, and set via
graph.brush (p. 58).

Simple Example

The following example draws the graph of a normal distribution around the
average 0.5, coloring it from almost pure blue to almost pure red:

// use the normalized 0 to 1 coordinate system
graph.scale(true);
h=0.02;
for x=0.1 to 0.9 by h do
t=-4*(x-0.5); y=math.exp(-t*t)*0.9;
color=[x,0,1-x];
graph.pen(color); graph.brush(color);
graph.rect(x,0.1,h,y)

end;
graph.pen(graph.black);
graph.text(0.1, h, "Value");
graph.text(0.1-h, 0.1, "Frequency", graph.up);
graph.show();

m Mobile Shell Library Version 2.01 57

3. User Interface c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

graph.bg

• function bg(color)→ Array

• function bg()→ Array

Gets or sets the background color of the graph view. With one argument,
sets the background color, and returns the old background color, as an array
of red, green and blue intensities. Without arguments, returns the current
background color.
See section 3.1 (p. 56) for the definition of colors.

// set the background color to a light gray
graph.bg([0.9,0.9,0.9])

graph.brush

• function brush(color)→ Array

• function brush()→ Array

Gets or sets the brush color. This is the color used to fill areas surrounded

58 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.1. Module graph: Screen Graphics

by objects. With one argument, sets the brush color or disables it (if
color=false), and returns the old brush color as an array of red, green
and blue intensities, or false if the brush was disabled. Subsequently added
objects will use the new brush color.
Without arguments, returns the current brush color.
By default, the brush is disabled. See section 3.1 (p. 56) for the definition of
colors.

// fill the objects with white
graph.brush(graph.white)

graph.circle

• function circle(x, y, diameter)→ null

Draws a circle in the square defined by the corners (x,y) and
(x+diameter,y+diameter). The outline is drawn with the current pen
color, and the circle is filled with the current brush color.

graph.scale(true);
graph.pen(graph.red);
graph.brush(graph.green); // fill with green
graph.circle(0.5, 0.4, 0.3);
graph.brush(false); // do not fill
graph.circle(0.5, 0.6, 0.3);

Sample m screen

m Mobile Shell Library Version 2.01 59

3. User Interface c© 2007 infowing AG

graph.clear

• function clear()→ null

Removes all objects from the view, so only an empty background is drawn.

graph.ellipse

• function ellipse(x, y, w, h)→ null

• function ellipse(x, y, w, h, alpha, beta)→ null

Draws an ellipse, an arc or a pie slice:

• With four arguments, draws an ellipse into the rectangle with corner at
x,y, width w and height h. The outline is drawn with the current pen
color, and the ellipse is filled with the current brush color.

• With six arguments and the brush enabled, draws the outline of a pie
slice with the current pen color, and fills it with the current brush color.
The pie is defined by two angles alpha and beta measured in degrees
from the x axis, on a circle around the center of the ellipse:

(x,y)

h

w

α

β

• With six arguments and the brush disabled, draws just the arc, i.e. the
part of the pie on the outline of the ellipse.

60 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.1. Module graph: Screen Graphics

// draw an elliptic pie, with parallel arcs
percent=[26, 18, 43, 13];
colors=[graph.red,graph.green,graph.blue,graph.yellow];
alpha=0;
for i=0 to len(percent)-1 do
beta=alpha+360*percent[i]/100;
// the pie slice (brush enabled)
graph.pen(graph.black); graph.brush(colors[i]);
graph.ellipse(10, 10, 160, 140, alpha, beta);
// the parellel arc (brush disbled)
graph.pen(colors[i]); graph.brush(false);
graph.ellipse(5, 5, 170, 150, alpha, beta);
alpha=beta

end;
graph.show()

Sample m screen

graph.font

• function font(font)→ Array

• function font()→ Array

Gets or sets the text font. With one argument, sets the current font, and returns
the old font. Subsequently via graph.text (p. 75) added texts will use the
new font. Without arguments, returns the current font.
The default font is the m console font. See ui.mfont (p. 86) for the defini-
tion of fonts, and graph.text (p. 75) for an example using fonts.

m Mobile Shell Library Version 2.01 61

3. User Interface c© 2007 infowing AG

graph.full

• function full()→ Array

• function full(enabled)→ Array

Compatibility of function graph.full

Sony Ericsson phonesa. Restricted menu access

aIn full screen mode, menus can only be accessed with the jog dial. Once activated, the
menu bar will stay on top of the view until graph.show is called again.

Without arguments, returns the size of the view in the current mode, scaled if
in scaled mode.
With one argument, enables (enabled=true) or disables (enabled=false)
full screen mode, and returns the new view size, scaled if in scaled mode.
Note that this does not change the size of the canvas; the canvas size can only
be changed with graph.size (p. 74).
The following function fills the screen (not the canvas) with an ellipse in a
given color:

function fill(color)
graph.clear();
graph.pen(color); graph.brush(color);
s=graph.full(); // get screen size
graph.ellipse(0, 0, s[0], s[1])

end

62 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.1. Module graph: Screen Graphics

Drawing a red ellipse in console mode just fills the console view, as usual:

graph.full(false);
fill(graph.red);
graph.show()

Series 60 sample screen UIQ sample screen

m Mobile Shell Library Version 2.01 63

3. User Interface c© 2007 infowing AG

Drawing a green ellipse after changing to full screen mode truncates the el-
lipse to the console view size (assuming the canvas size wasn’t changed):

graph.full(true);
fill(graph.green);
graph.show()

Series 60 sample screen UIQ sample screen

64 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.1. Module graph: Screen Graphics

Drawing a blue ellipse after setting the canvas size to the view size fills the
entire screen with the ellipse:

s=graph.full(true);
graph.size(s[0], s[1]);
fill(graph.blue);
graph.show()

Series 60 sample screen UIQ sample screen

graph.get

• function get(x, y)→ Number

• function get(x, y, w)→ Array

• function get(x, y, w, h)→ Array

Gets a pixel, a scan line or a rectangle from the current image.
With two arguments, returns the color of the pixel at (x,y) as a single integer
(see section 3.1 (p. 56)).
With three arguments, returns an array with the pixel colors of the horizontal

m Mobile Shell Library Version 2.01 65

3. User Interface c© 2007 infowing AG

line of length w starting at (x,y).
With four arguments, returns a matrix with the pixel colors of the rectangle
with corner (x,y), width w and height h.
In scaled mode, coordinates and dimensions are scaled.
See also graph.put (p. 69).

graph.hide

• function hide()→ null

Hides the graph view, showing the standard process view, or any previous
view. If the graph view is not shown, this call is ignored.

graph.icon

• function icon(path, transparent=null)→ Native Object

Permissions: Read(path)

• function icon(data, transparent=null)→ Native Object

• function icon(data, maskData)→ Native Object

• function icon(icon)→ Native Object

Creates an icon from an image file, or from color data, and returns the icon
object. Icons may have an optional transparency mask, defining which pixels
are opaque (drawn) and which are transparent (not drawn) when drawing the
icon with graph.put (p. 69).
With a single path argument, loads an image from the file at path, and re-
turns it as an icon. The image file formats supported vary from device to de-
vice, but usually include BMP, GIF, JPEG and PNG formats. If the image has
transparency information, it is also loaded to define the icon’s transparency
mask. Alternatively, if transparent is a number, all pixels of this color are
assumed transparent.
With a single data argument, the icon’s image is defined by the colors in
data. data is typically a matrix as returned by graph.get (p. 65), but can
also be a single pixel or a scan line. If transparent is a number, all pixels
of this color are assumed transparent. Alternatively, the matrix maskData

can define transparency on a pixel by pixel basis: all black (zero) pixels in

66 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.1. Module graph: Screen Graphics

maskData are assumed transparent. maskData must have the same dimen-
sions as data.
With a single icon argument, a copy of the icon is created and returned, e.g.
to scale it while still keeping the original.
Use graph.size (p. 74) to obtain the size of an icon, or to rescale it.
Large icons, e.g. those produced by a high resolution camera, consume con-
siderable memory.

// load the icon
i=graph.icon("mShell.png")
// get its size
graph.size(i)
→ [156,92]
// draw it
graph.put(20,20,i)
// copy the icon
i2=graph.icon(i);
// scale the copy into a 80x80 square and draw it
graph.size(i2,80,80);
graph.put(20,120,i2);
graph.show()

Sample m screen

graph.line

• function line(x1, y1, x2, y2)→ null

Draws a line from (x1,y1) to (x2,y2), using the current pen color.

m Mobile Shell Library Version 2.01 67

3. User Interface c© 2007 infowing AG

// plot a sine wave from 0 to 4 pi
graph.scale(true);
x1=0; y1=0;
for x=0 to 1 by 0.02 do
y=(math.sin(4*math.pi*x)+1)/2;
if x>0 then graph.line(x1,y1,x,y) end;
x1=x; y1=y

end;
graph.show()

Sample m screen

graph.pen

• function pen(color)→ Array

• function pen()→ Array

Gets or sets the pen color. This is the color used to draw the outlines of ob-
jects. With one argument, sets the pen color or disables it (if color=false),
and returns the old pen color as an array of red, green and blue intensities, or
false if the pen was disabled. Subsequently added objects will use the new
pen color.
Without arguments, returns the current pen color.
The default pen color is black. See section 3.1 (p. 56) for the definition of
colors.

// use a slightly dark magenta pen
graph.pen(0xc000c0)

68 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.1. Module graph: Screen Graphics

graph.poly

• function poly(x, y)→ null

Draws a closed polygon following the points given by x and y. x

and y must be two arrays of identical length. The polygon’s edges are
lines from (x[i],y[i]) to (x[i+1],y[i+1]) (0 <= i < len(x) -

1), with the last (closing) line going from (x[len(x)-1],y[len(x)-1])

to (x[0],y[0]). The lines of the polygon are drawn with current pen color,
and the polygon’s interior (or interiors) are filled with the current brush color.

// draw a blue bowtie, filled with cyan
graph.pen(graph.blue); graph.brush(graph.cyan);
graph.poly([20,150,150,20],[40,140,40,140]);
graph.show()

Sample m screen

graph.put

• function put(x, y, color)→ null

• function put(x, y, icon)→ null

Draws a single pixel, a scan line or a rectangle, or draws an icon.
If color is a number, sets the pixel at (x,y) to the color color.
If color is an array of numbers, sets the pixels from (x,y) to
(x+len(color)-1,y) to the colors in color.
If color is a matrix of numbers, sets the rectangle with upper left corner
(x,y), height len(data) and width len(data[0]) to the colors in color.

m Mobile Shell Library Version 2.01 69

3. User Interface c© 2007 infowing AG

If the third parameter is an icon, draws icon with upper left corner (x,y). If
the icon has a mask, only opaque pixels are drawn.
In scaled mode, (x,y) are scaled, but always define the upper left corner of
the rectangle.
Current pen and brush color do not affect what is being drawn.
A graph.put example drawing single points:

// plot a sine wave with single red points
graph.bg([0.8,1,0.8]); graph.clear();
graph.scale(true);
for x=0 to 1 by 0.01 do
y=(math.sin(4*math.pi*x)+1)/2;
graph.put(x,y,graph.red)

end;
graph.show()

Sample m screen

A graph.put example drawing icons, with and without transparent back-

70 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.1. Module graph: Screen Graphics

ground:

// Draw a blue ellipse
graph.brush(graph.blue);
graph.ellipse(0,0,60,40)
// Copy the ellipse and replicate it
data=graph.get(0,0,60,40);
for i=0 to 3 do
graph.put(40*i,30*i,data)

end;
// The entire rectangle is overwritten
graph.show()
// Create an icon, making white transparent
icon=graph.icon(data, graph.white);
graph.clear()
// Replicate the icon
for i=0 to 3 do
graph.put(40*i,30*i,icon)

end
// Only non-white pixels are overwritten
graph.show()

graph.rect

• function rect(x, y, w, h)→ null

Draws a rectangle between the corners (x,y) and (x+w,y+h). The outline

m Mobile Shell Library Version 2.01 71

3. User Interface c© 2007 infowing AG

is drawn with the current pen color, and the rectangle is filled with the current
brush color.
rect(x,y,w,h) produces the same as
poly([x,x+w,x+w,x],[y,y,y+h,y+h]).

graph.save

• function save(path)→ null

Permissions: Write(path)

• function save(path, x, y, w, h)→ null

Permissions: Write(path)

Saves the image produced by drawing to the file given by path. With one ar-
gument, saves the whole image. With five arguments, saves only the rectangle
between the corners (x,y) and (x+w,y+h).
The desired image file format is determined from the image file suffix. Sup-
ported file suffices are .gif (GIF format), .jpg (JPEG format) and .png

(PNG format).

Compatibility of saving to PNG
Sony Ericsson phones ErrNotSupported

// save the entire drawing to rates.jpg
graph.save("rates.jpg");
// save only the upper right quadrant to d:\rates.gif
graph.scale(true);
graph.save("d:\rates.gif", 0.5, 0.5, 0.5, 0.5)

graph.scale

• function scale(scaled)→ Boolean

• function scale()→ Boolean

Gets or sets the current scaling mode. With one argument, sets the scaling
mode to scaled, and returns the old scaling mode. Without an argument,
returns the current scaling mode.
For information about scaling, see section 3.1 (p. 55).

72 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.1. Module graph: Screen Graphics

graph.show

• function show()→ null

• function show(x, y)→ null

Shows the graph view, hiding the standard process view, and draws all objects
added so far. If the graph view is already shown, it is redrawn.
With two arguments, also aligns the origin of the graph view with point (x,y)
of the the canvas. In unscaled mode, the origin of the view is in its upper left
corner, and graph.show(0,0) aligns the upper left corner of the canvas
with it. In scaled mode, x and y are scaled, and graph.show(0,0) aligns
the lower left corner of the view with the lower left corner of the canvas.

// get the original size and create a canvas of 480x320
s=graph.size(480, 320)
// draw a red circle on it
graph.brush(graph.red);
graph.ellipse(10, 10, 460, 300)
// show its upper left quadrant
graph.show(0, 0)
// show its lower right quadrant
graph.show(480-s[0], 320-s[1])

m Mobile Shell Library Version 2.01 73

3. User Interface c© 2007 infowing AG

graph.size

• function size()→ Array

• function size(icon)→ Array

• function size(text)→ Array

• function size(w, h)→ Array

• function size(icon, scale)→ Array

• function size(icon, w, h)→ Array

Without arguments, returns the size (width and height) of the drawable
area. The drawable area includes all the points in the rectangle between
(0,0) and (graph.size()[0], graph.size()[1]). In unscaled mode,
graph.size() returns the width and height as number of pixels. In scaled
mode, one of width or height will always be one.
With one argument, returns the size (width and height) of the icon icon, or
of text if it were drawn using the current font.
With two numeric arguments w and h, sets the size of the canvas to width w

and height h, and returns the size of the old canvas (initially, the size of the
canvas matches the size of the view). In unscaled mode, w and h are measured
in pixels. In scaled mode, w and h are resizing factors (relative to the current
size), and the scale is recalculated. See graph.show (p. 73) for an example
using a canvas larger than the view.
With two arguments icon and a scale, scales the icon icon by the factor
scale. Returns the old size (width and height) of the icon.
With three arguments, scales the icon icon to the width w and height h. Re-
turns the old size (width and height) of the icon.

74 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.1. Module graph: Screen Graphics

// get unscaled and scaled sizes
graph.scale(false);
print graph.size()
→ [208,227]
graph.scale(true);
print graph.size()
→ [1,1.0913461538]
// draw text centered in a red rectangle
text="Alarm"; x=0.5; y=0.2; w=0.6; h=0.2;
graph.brush(red); graph.rect(x, y, w, h);
s=graph.size(text);
graph.text(x+(w-s[0])/2,y+(h-s[1])/2,text);
graph.show()

Sample m screen

graph.text

• function text(x, y, text, direction=0)→ null

Draws text starting (the baseline of the first character) at point (x,y) using
the current font. Text can be drawn horizontally or vertically:

• If direction=0, text is drawn horizontally.

• If direction>0, text is drawn vertically going up.

• If direction<0, text is drawn vertically going down.

m Mobile Shell Library Version 2.01 75

3. User Interface c© 2007 infowing AG

Two indicate the direction, two constants are defined:
• const up = 1 For vertical text going upwards.
• const down = -1 For vertical text going downwards.

graph.pen(0x800080);
graph.text(50,70,"mShell");
graph.text(50,70,"mShell",graph.up);
old=graph.font(["SwissA", 24, true, false]);
graph.pen(0x808000);
graph.text(50,90,"mShell");
graph.text(50,90,"mShell",graph.down);
graph.font(old);
graph.show()

Sample m screen

3.2 Module ui: User Interface Functions

This module provides functions to display standard dialogs and menus and to
modify the m user interface.

ui.busy

• function busy(activity)→ null

• function busy()→ null

With one argument, shows a popup window with the text activity, indi-

76 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.2. Module ui: User Interface Functions

cating that something is going on. Without an argument, discards the popup
window.
Both calls return immediately.

ui.busy("Wait five seconds"); // show a popup window
sleep(5000);
ui.busy() // discard the window

Series 60 sample screen UIQ sample screen

ui.cmd

• function cmd(timeout=-1)→ Number|String|Array|null

This function waits for a user command or action:

• A key press, release, or complete keystroke: the function returns the
positive scan code for a key press, the negative scan code for a release,
or the key code for a keystroke.

For characters, both scan codes and key codes typically correspond
to their UNICODE R© number, and can thus be converted with .char

(p. 8). Codes for navigation and system keys are device specific. Some
important keys are defined as constants (see 3.2 (p. 90)).

ui.keys (p. 82) must have been called before to declare interest in
such keyboard input.

• A script specific menu command being selected by the user: the func-
tion returns the corresponding string from the menu.

ui.menu (p. 85) must have been called before to set up the menu.

• The user touches the screen with the pointing device or moves it: the
function returns an array with the following elements:

m Mobile Shell Library Version 2.01 77

http://www.unicode.org

3. User Interface c© 2007 infowing AG

Key Meaning
x x-coordinate of pointer
y y-coordinate of pointer
buttons mask of pressed buttons: bit 0 for button 1, bit 1

for button 2, bit 2 for button 3.

ui.ptr (p. 88) must have been called before to declare interest in such
pointer input.

If a monitored user action (keystroke, menu selection, pointing) occurred be-
fore ui.cmd is called, it immediately returns the corresponding result.
If timeout>=0 and timeout milliseconds have passed without response
from the user, null is returned. Throws ExcValueOutOfRange if ms ex-
ceeds 2147483 (35 minutes and 47.483 seconds).
Keyboard, menu and pointer can all be monitored together in a single ui.cmd
call.
See ui.keys (p. 82) for an example using the keyboard, ui.menu (p. 85) for
an example using menus, ui.ptr (p. 88) for an example using the pointer.

ui.confirm

• function confirm(question, title="mShell")→ Boolean

Shows a simple dialog displaying question in a dialog with title title.
The dialog asks the user for confirmation, presenting two buttons or soft keys
with the options “yes” and “no”.
Returns true if the user answers “yes”, and false if the user answers “no”.

name="labels.txt";
if ui.confirm("Really delete " + name + "?") then
files.delete(name)

end

78 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.2. Module ui: User Interface Functions

Series 60 sample screen UIQ sample screen

ui.error

• function error(message)→ null

Displays a dialog with the error message, waiting until the user presses the
“continue” button or a key.

adr="ma@dalton-brothers.com";
ui.error("Something went wrong.\nPlease e-mail " + adr)

Series 60 sample screen UIQ sample screen

ui.fonts

• function fonts()→ Array

Gets an array with the available fonts. Each font is described by a four ele-
ment array:

m Mobile Shell Library Version 2.01 79

3. User Interface c© 2007 infowing AG

Index Content Type
0 Font name String

1 Minimum font size in pixels Number

2 Maximum font size in pixels Number

3 Font is scalable Boolean

print ui.fonts()[0]
→ SwissA,10,19,false

ui.form

• function form(items, title="mShell")→ Array|null

Compatibility of function ui.form

Nokia phones silently ignore the title parameter.

Displays a dialog to edit the data in items, with the given title. The keys of
items will be used as labels (prompts) in the form. Array elements without
a key are shown as read-only texts.
The following data types can be edited:

Data Type Field Type
String without \n Single line text editor
String with \n Multi-line text editor
String with trailing ui.secret Password editor indexsecret editor
Number Number editor (floating point)
Boolean Check box or popup yes/no choice
Array Combo box or popup multiple choice

For the multi-line and secret editors, a terminating \n or ui.secret will be
removed, so an empty multi-line field is defined by a single newline character,
and an empty secret field by ui.secret.
The initial values shown in the form are the values given in items, except for
an array value, where initially the first array element is selected.
If the user presses Ok’, this function returns an array with the values entered
or chosen by the user. If the user presses Cancel, null is returned.

80 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.2. Module ui: User Interface Functions

old=["Name":"",
"Details:", // just a label
"Age":32,
"Member":false,
"Beverage":["Water", "Beer", "Wine", "Whiskey"],
"Comment":"\n"]; // a multiline field

new=ui.form(old, "Member Card");
print new
→ [Lucky Luke,35,false,Beer,He’s a poor,

lonesome cowboy]
print keys(new)
→ [Name,Age,Member,Beverage,Comment]

Series 60 sample screen UIQ sample screen

A typical username/password dialog is obtained as follows:

old=["Username":"", "Password":ui.secret];
new=ui.form(old, "Login");
print new
→ [lluke,rosinante]

m Mobile Shell Library Version 2.01 81

3. User Interface c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

ui.idletime

• function idletime(reset=false)→ Number

Returns the number of milliseconds since the last user activity (keypress or
pointer action) on the device. If reset=true, resets the inactivity timer to
zero.

// after about a minute of inactivity, beep
sharp=false;
while true do
if ui.idletime() < 60000 then
sharp=true

elsif sharp then
audio.beep(); sharp=false

end;
sleep(2000)

end

ui.keys

• function keys(pressAndRelease,allowFocus=false)→ null

• function keys()→ null

Declares interest in keyboard events, for processing by ui.cmd (p. 77).
Whenever the user performs a keyboard action, the scan code or key code

82 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.2. Module ui: User Interface Functions

will be returned by the currently waiting or a next call to ui.cmd.
If pressAndRelease=false, ui.cmd will return key codes for complete
keystrokes.
If pressAndRelease=true, ui.cmd will return positive scan codes for key
presses and negative scan codes for key releases (each keystroke typically
produces two events).
If allowFocus=true, the console will obtain the keyboard focus, letting it
interpret keystrokes:

• On UIQ devices, the virtual keyboard will be active, and writing a char-
acter with the pen will also produce a keystroke.

• On Series 60 devices, the keys will be interpreted as if writing a text.

Keyboard events will be ignored by ui.cmd after calling ui.keys without
arguments.
Each call to ui.keys flushes the internal keyboard buffer.
The following example outputs keystrokes until the “go” key is pressed.

ui.keys(false); // return keystrokes
do
c=ui.cmd();
print "pressed",c,"=",char(c)

until c=ui.gokey
→ pressed 55 = 7

pressed 42 = *
pressed 63557 =

ui.large

• function large()→ Boolean

• function large(enabled)→ Boolean

Compatibility of function ui.large

Sony Ericsson phones UI size change is not possi-
ble; function always returns
false.

m Mobile Shell Library Version 2.01 83

3. User Interface c© 2007 infowing AG

Without arguments, returns the current m application view size: false if the
view size is small (title pane shown), true if the view size is large (title pane
hidden).
With one argument, return the current view size, and sets the new view size:
with enabled=true, changes the view size to large, with enabled=false,
changes the view size to small. This has the same effect as toggling the view
size from the menu: it changes the view size for the entire m application, in
all processes.

ui.list

• function list(items, multiple=false, init=[],
title="mShell")→ Array|null

Displays a list dialog to choose from the data in items:

• If multiple=false, only one item can be selected. This is usually
simply the highlighted (current) item.

• If multiple=true, multiple items can be selected. These are usually
the marked items.

Initially, the items indexed in init will be selected (or marked).
If the user presses “ok”, this function returns the indices of the items selected
by the user, i.e. an array of numbers indexing into items. If the user presses
“cancel”, null is returned.
title is not supported on Nokia devices and silently ignored.

f=["apple.jpg", "apricot.jpg", "peach.jpg",
"pear.jpg", "prune.jpg"];

print ui.list(f, true, [1,3], "Fruit Files")
→ [2,3]

84 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.2. Module ui: User Interface Functions

Series 60 sample screen UIQ sample screen

ui.menu

• function menu(title, commands, keepold=true,
interrupt=false)→ null

• function menu()→ null

Replace the standard “Process” menu by a new menu, with title and the
menu items defined by array commands, for processing by ui.cmd (p. 77).
If keepold=true, the standard process menu will be added at the end, as
a submenu. If keepold=false, the standard functions are not available,
preventing the user from easily stopping or closing the running process.
If interrupt=true, a menu selection by the user will interrupt a
waiting function call (except ui.cmd) with ExcInterrupted. If
interrupt=false, function calls will not be interrupted, and the menu se-
lection will go unnoticed until ui.cmd is called.
Without arguments, restores the standard menu.
Whenever the user selects a menu item, the item will be returned by the cur-
rently waiting or the next call to ui.cmd (p. 77).

m Mobile Shell Library Version 2.01 85

3. User Interface c© 2007 infowing AG

ui.menu("Colors", ["Red", "Green", "Blue", "End"]);
while true do
c=ui.cmd();
if c="End" then break end;
print c,"chosen"

end

Series 60 sample screen UIQ sample screen

ui.mfont

• function mfont()→ Array

• function mfont(font)→ Array

Gets or sets the font used in all m consoles. Without parameter, returns the
currently used font as an array with the following elements:

Index Meaning Type
0 Font name String

1 Font size in pixels Number

2 Bold font Boolean

3 Italic font Boolean

If the parameter font is a string, set the font to the one with the given name,
without changing the other attributes.
If the parameter font is an array, the array must have the elements listed

86 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.2. Module ui: User Interface Functions

above, and the font is set accordingly.

old=ui.mfont();
print old
→ [Monospace,11,false,false]
// use a proportional sans serif font
ui.mfont("SwissA");
// make it large and bold
ui.mfont(["SwissA", 16, true, false])

ui.msg

• function msg(message, title="mShell")→ null

Displays a dialog with message, waiting until the user presses the “continue”
button or a key. message can have multiple lines, separated by \n characters.

ui.msg
("This is - for a cellphone - quite a long message."
+ "\nIt also has a second line.",
"Long message");

Series 60 sample screen UIQ sample screen

ui.pfonts

• function pfonts()→ null

Prints a table of the available fonts, with the following columns:

• Font name.

m Mobile Shell Library Version 2.01 87

3. User Interface c© 2007 infowing AG

• Minimal and maximal size in pixels, separated by -.

• Number of scaling steps from minimal to maximal size, prefixed by x.

• Font attributes: p: proportional, s: serif, y: symbol, S: scalable.

ui.pfonts()
→ SwissA 10-19x4 p---

Courier 8- 8x1 -s--
Symbol 11-16x2 p-y-
Calc 13-35x3 --y-
Eikon 15-15x1 --y-
Calcinv 14-14x1 --y-
Digital 35-35x1 --y-

ui.ptr

• function ptr(absoluteCoord)→ null

• function ptr()→ null

Declares interest in pointer events, for processing by ui.cmd (p. 77). When-
ever the user performs a pointing device action, the pointer coordinate and
button will be returned by the currently waiting or a next call to ui.cmd.
To generate these events, there must be a pointing device: on UIQ devices,
the pen corresponds to button one. However, unlike a mouse, the pen only
generates events while button is pressed, i.e. the pen touches the screen1.
If absoluteCoord=true, ui.cmd will return absolute coordinates (the ori-
gin is the upper left corner of the screen).
If absoluteCoord=false, ui.cmd will return relative coordinates (the ori-
gin is the upper left corner of the console, or graph view).
Pointer events will be ignored by ui.cmd after calling ui.ptr without argu-
ments.
The following example outputs the position of the pointing device, until the
pen goes up (button one is no longer pressed) in the upper left corner of the
console.

1mVNC has limited support for the Series 60 pointer via the mouse.

88 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.2. Module ui: User Interface Functions

ui.ptr(false); // return relative coordinates
do
c=ui.cmd();
print "at",c["x"],c["y"]

until c["x"]<=10 and c["y"]<=10 and c["buttons"]=0
→ at 123 116

at 123 146
at 91 142
...
at 11 7
at 8 7
at 7 7

ui.query

• function query(prompt, title="mShell", value="")→
String|Number|null

Displays a dialog querying for a single text input. The input field is initialized
with value, and labelled with prompt.
If value is a number, the input field is numeric and does not allow non-
numeric characters. The only valid characters are 0123456789-+,.Ee.
The return value will also be numeric in this case. The function throws
ExcInvalidNumber if the format of the number entered is not valid.
If the user presses “ok”, this function returns the value entered by the user. If
the user presses “cancel”, null is returned.
The same effect can be achieved with ui.form (p. 80), but ui.query is
simpler to use.

old="labels.txt";
new=ui.query("New name", "Rename", old);
if new#null and new#old then
files.rename(old, new)

end

m Mobile Shell Library Version 2.01 89

3. User Interface c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

ui.save

• function save(path)→ null

Permissions: Write(path)

Saves the current contents of the console to file path. This has the same effect
as manually executing Process→Save Output, except that path is relative
to the current directory of the process.
The text is written using the current source file encoding.

print "Hello world";
→ Hello world
ui.save("output.txt");
print io.readln(io.open("output.txt", false, io.bom))
→ Hello world

ui Constants

These constants define the key codes (for keystrokes) of the navigation key-
pad typically found on Nokia phones, and the Jog Dial on Sony Ericsson
phones.
• const downkey = down key code The “down” navigation key.
• const gokey = go key code The “go” or “confirm” navigation key.
• const leftkey = left key code The “left” navigation key.
• const rightkey = right key code The “right” navigation key.

90 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 3.3. Module vibra: Vibration Control

• const secret = "\u0001" The secret input field mark.
• const upkey = up key code The “up” navigation key.

3.3 Module vibra: Vibration Control

Compatibility of module vibra
Nokia phones before Symbian 8a Internal Error

aSee also Forum Nokia, Developer Platform 2.0: Known Issues, 5.13

This module provides simple functions to control the device vibration feature
of some devices.

vibra.off

• function off()→ null

Turns the vibration off. If the device is not vibrating, the call is ignored.

vibra.on

• function on(duration=0)→ null

Turns the vibration on for the specified duration (in milliseconds). If
duration=0, vibration is turned on until vibra.off (p. 91) is called.
This function returns immediately, before the specified time has passed.
Throws ExcValueOutOfRange if the duration is outside the valid range (0
to 65535).

// vibrate for one second:
vibra.on(1000)
// another way to vibrate for one second:
vibra.on();
sleep(1000);
vibra.off()

m Mobile Shell Library Version 2.01 91

3. User Interface c© 2007 infowing AG

92 m Mobile Shell Library Version 2.01

c© 2007 infowing AG

4. Mathematics

4.1 Module bigint: Arbitrarily Large Inte-
gers

This module supports calculations with big integers. The maximum (or min-
imum) value for a big integer is limited only by available memory. All calcu-
lations are performed with full precision.
Big integers are native objects. Three functions convert between big integers
and other representations:

• bigint.new (p. 96) creates a new big integer from a number, a string
(in a given base, e.g. hexadecimal), or another big integer.

• bigint.num (p. 96) converts a big integer to a number (potentially
loosing significant digits).

• bigint.str (p. 97) converts a big integer to a string encoded in a
given base.

The big integer arguments of all functions can also be specified as a number
or as a string encoding a decimal number:

a=bigint.mul("33333333333333333333333333333333333", -2);
print a, bigint.str(a)
→ bigint@414ffc -66666666666666666666666666666666666

bigint.abs

• function abs(p)→ Native Object

Computes the absolute value of p as a big integer.

m Mobile Shell Library Version 2.01 93

4. Mathematics c© 2007 infowing AG

r=bigint.abs("-314159265358979323846264");
print bigint.str(r)
→ 314159265358979323846264

bigint.add

• function add(p, q)→ Native Object

Computes the sum of p and q as a big integer.

r=bigint.add("123456789012345678901234567890",
8765432110);

print bigint.str(r)
→ 123456789012345678910000000000

bigint.cmp

• function cmp(p, q)→ Number

Compares p and q:

• Returns -1 if p < q.

• Returns 0 if p = q.

• Returns 1 if p > q.

p=bigint.new("100000000", 16);
q=bigint.new(4294967296);
print bigint.cmp(p, q)
→ 0

bigint.div

• function div(p, q)→ Native Object

Computes the quotient of p and q as a big integer. Throws
ErrDivideByZero if q=0.

94 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 4.1. Module bigint: Arbitrarily Large Integers

r=bigint.div("123456789012345678901234567890",
1234567890);

print bigint.str(r)
→ 100000000010000000001

bigint.mod

• function mod(p, q)→ Native Object

Computes the remainder of p and q as a big integer. Throws
ErrDivideByZero if q=0.

r=bigint.mod("123456789012345678901234567893",
1234567890);

print bigint.str(r)
→ 3

bigint.mul

• function mul(p, q)→ Native Object

Computes the product of p and q as a big integer.

p=bigint.new(333333333333333);
r=bigint.mul(p, p);
print bigint.str(r)
→ 111111111111110888888888888889

bigint.neg

• function neg(p)→ Native Object

Computes the value of p with sign changed.

r=bigint.neg("314159265358979323846264")
print bigint.str(r)
→ -314159265358979323846264

m Mobile Shell Library Version 2.01 95

4. Mathematics c© 2007 infowing AG

bigint.new

• function new(p)→ Native Object

• function new(string, base=10)→ Native Object

Creates a new big integer with the value of p. p can be:

• Another big integer. In this case a copy of p is returned.

• A number. Digits after the decimal points are ignored, and for values
outside the range −263 to +263 − 1, the result is undefined.

• A string encoding an integer in the given base. Valid bases are in the
range 2 (binary) and 36 (using letters A to Z and a to z for digits 11 to
36).

Leading and trailing blanks in the string are ignored.

Throws ErrArgument if the base is out of range or the string contains
invalid characters.

m=bigint.new(-18513.7);
print bigint.str(m)
→ -18513
m=bigint.new("ffffffffffffffff", 16);
print bigint.str(m, 4)
→ 33333333333333333333333333333333

bigint.num

• function num(p)→ Number

Converts the big integer p to a number. If p is outside the range −263 to
+263 − 1, the result is undefined.

r=bigint.div("12345678901234567890", 1234567890);
print bigint.num(r) / 2
→ 5000000000.5

96 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 4.1. Module bigint: Arbitrarily Large Integers

bigint.pow

• function pow(p, q)→ Native Object

• function pow(p, q, m)→ Native Object

Efficiently computes pq as a big integer. With three arguments, computes the
remainder of dividing pq by m.
Throws ErrArgument if q<0. Throws ErrDivideByZero if m=0.

// perform RSA encryption with a 256-bit key
e=bigint.new("7715580902129052762255348495586732516285"+

"0754331340849769128881931930089847467");
m=bigint.new("1157337135319357914338302274338009877449"+

"56524669244552124759012865929681230709");
c=bigint.pow("3695195570339388218205223153428883192073"+

"329889262155589752278898769206369823",
e, m);

print bigint.str(c)
→ 2090963726256956961627254580276511758392932630933805

1745096332980705650678328

bigint.str

• function str(p, base=10)→ String

Converts the big integer p to a string in the given base. Valid bases are in the
range 2 (binary) and 36 (using letters a to z for digits 11 to 36).

// convert a large decimal to a large hexadecimal number
s=bigint.str("123456789012345678901234567890", 16);
print s
→ 18ee90ff6c373e0ee4e3f0ad2

bigint.sub

• function sub(p, q)→ Native Object

Computes the difference of p and q as a big integer.

m Mobile Shell Library Version 2.01 97

4. Mathematics c© 2007 infowing AG

r=bigint.sub("123456789012345678901234567890",
-8765432110);

print bigint.str(r)
→ 123456789012345678910000000000

4.2 Module math: Mathematical Functions

This module provides standard mathematical functions.

math.abs

• function abs(x)→ Number

Returns the absolute value of x.

math.acos

• function acos(x)→ Number

Returns the arcus cosine (in radians) of x.
Throws ErrArgument if abs(x) > 1.

math.asin

• function asin(x)→ Number

Returns the arcus sine (in radians) of x.
Throws ErrArgument if abs(x) > 1.

math.atan

• function atan(x)→ Number

Returns the arcus tangent (in radians) of x.

98 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 4.2. Module math: Mathematical Functions

math.ceil

• function ceil(x)→ Number

Returns the smallest integer greater than or equal to x.

print math.ceil(3)
→ 3
print math.ceil(3.4)
→ 4
print math.ceil(-3.4)
→ -3

math.cos

• function cos(x)→ Number

Returns the cosine of x (in radians).

math.exp

• function exp(x)→ Number

Returns ex

math.floor

• function floor(x)→ Number

Returns the largest integer less than or equal to x.

print math.floor(3)
→ 3
print math.floor(3.4)
→ 3
print math.floor(-3.4)
→ -4

m Mobile Shell Library Version 2.01 99

4. Mathematics c© 2007 infowing AG

math.log

• function log(x)→ Number

Returns the natural logarithm of x.

math.pow

• function pow(x, y)→ Number

Returns xy .
Throws ErrArgument if x < 0 and y is not an integer.
Throws ErrOverflow if x = 0 and y < 0.

print math.pow(2, 0.5)
→ 1.4142135624
print math.pow(-5, 3);
→ -125

math.random

• function random()→ Number

• function random(seed)→ Number

Returns a random number uniformely distributed in the interval 0 (inclusive)
to 1 (exclusive). With an argument, initializes the sequence of random num-
bers with seed. seed can be any number.
The default initialization is based on the current time.

math.random(0);
for i=1 to 3 do
print math.random()

end
→ 0.0038488093

0.6952766137
0.2338878537

100 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 4.2. Module math: Mathematical Functions

math.round

• function round(x, decimals=0)→ Number

Rounds x to decimals decimal digits.

print math.round(4.5)
→ 5
print math.round(math.pi, 4)
→ 3.1416

math.sin

• function sin(x)→ Number

Returns the cosine of x (in radians).

math.sqrt

• function sqrt(x)→ Number

Returns the square root of x.
Throws ErrArgument if x < 0.

math.tan

• function tan(x)→ Number

Returns the tangent of x (in radians).

math.trunc

• function trunc(x)→ Number

Returns the integral part of x.

m Mobile Shell Library Version 2.01 101

4. Mathematics c© 2007 infowing AG

print math.trunc(3)
→ 3
print math.trunc(3.4)
→ 3
print math.trunc(-3.4)
→ -3

math Constants

• const e = 2.718281828459045 Euler constant.
• const pi = 3.141592653589793 π.

102 m Mobile Shell Library Version 2.01

c© 2007 infowing AG

5. Personal Data

5.1 Module agenda: Agenda Database

This module allows to read and manipulate the agenda (calendar and to-do
list) stored on the phone. There are different types of agenda entries, each
type identified by its flag:

• Appointment (agenda.appt flag): an entry starting at a date and time
and ending on the same day, e.g. a team meeting.

• Event (agenda.event flag): an entry starting at a date and ending on
a date, e.g. holidays.

• Anniversary (agenda.anniv flag): an entry occuring at a date, with
an optional base year (e.g. the year of birth).

• To-do list item (agenda.todo flag): an entry with a due date and a
priority. When done, it also gets a done (“crossed out”) date.

The standard calendar application on the phone often does not support all
entry types and attributes.
In the phone’s database, an agenda entry is identified by its id, an integer
number.

Agenda Fields

In m, an agenda entry is represented as an array whose elements are the fields
of the entry. Fields are identified by their (array) keys. m recognizes the
following keys, with the corresponding data type:

m Mobile Shell Library Version 2.01 103

5. Personal Data c© 2007 infowing AG

Key Meaning Type Used in

a
p
p
t

e
v
e
n
t

a
n
n
i
v

t
o
d
o

alarm Alarm date/time Seconds × × × ×
base Base year Integer ×
done Done date Seconds ×
end End date/time Seconds × × ×
flags Entry flags (see below) Integer × × × ×
loc Location String × × × ×
prio Priority Integer ×
rep Repeat details (see below) Array × × × ×
start Start date/time Seconds × × × ×
text Entry text String × × × ×

Key names are not case sensitive.
All dates and times of an entry are represented as seconds since the start
of year zero in local time (see also module time (p. 48)). Valid dates are
January 1st, 1980 or 1900 to December 31st, 2100. The functions of this
module throw ExcValueOutOfRange if a date outside this range is used.
The only exception is the base year (base) of an anniversary entry, which is
simply an integer indicating any year.
The order of fields in the array describing an entry is arbitrary. Arrays re-
turned by functions in this module always start with the two fields text and
flags.

Agenda Entry Flags

The flags field is a bitwise combination of the following values:
• const anniv = 4 Entry is an anniversary.
• const appt = 1 Entry is an appointment.
• const done = 32 To-do entry is done.
• const event = 2 Entry is an event.
• const rep = 16 Entry is repeated.
• const remind = 64 Entry is a reminder.
• const todo = 8 Entry is a to-do list item.

104 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 5.1. Module agenda: Agenda Database

Flags can be used to select entries in agenda.find (p. 108), and they must
be used to indicate the type of the new entry in agenda.add (p. 107).
For use in agenda.find (p. 108), there is also the value
• const all = 127 All flags combined.

Repetitive Entries

All dated entries can be repetitive: a repetitive entry is automatically repeated
according to its repeat details. For instance, an anniversary is typically re-
peated on the same date every year. Repeating an entry does not duplicate
the entry; deleting or updating a repetitive entry also deletes or updates all its
repetitions.
In m, the repeat details of an entry are represented as an array stored in the
entry’s rep field. m recognizes the following keys of this array, with the
corresponding data type:

Key Meaning Type
end Repeat end date Seconds
interval Repeat interval (days, months, years) Integer
type Repeat type (see below) Integer
when Repeat selection (see below) Array of Integer

If end=null (the default), the entry is repeated forever. The default
interval is 1. type must be one of the following six values:
• const daily = Repeat daily.

Repeat the entry every interval days.

// plan for an 30 minute exercise at 8am
// every three days, starting today
today=86400 * math.trunc(time.get() / 86400);
e=["text":"exercise",

"start":today+8*3600,
"end":today+8*3600+1800,
"flags":agenda.appt,
"rep":["type":agenda.daily, "interval":3]]

• const weekly = Repeat weekly.

Repeat the entry every interval weeks, on the week days indicated by
when. Week days start with zero as Monday; see also time.dayofweek

m Mobile Shell Library Version 2.01 105

5. Personal Data c© 2007 infowing AG

(p. 48).

// repeat every week on Tuesday and Friday
e["rep"]=["type":agenda.weekly, "when":[1,4]]

• const monthlydate = Repeat monthly, at given dates.

Repeat the entry every interval months, on the days indicated by when.

// repeat every two months on the 10th and 25th
e["rep"]=["type":agenda.monthlydate,

"interval":2, "when":[10,25]]

• const monthlyday = Repeat monthly, at given days of

weeks.

Repeat the entry every interval months, on the week days in the weeks
indicated by when: when[2*i] indicates the week of the month (1 is the
first, 4 is the fourth, 5 the last), and when[2*i+1] indicates the day of week
(0 is Monday).

// repeat every month on the Tuesday (1) of the 2nd
// week (2), and on the Tuesday (1) of the last week (5)
e["rep"]=["type":agenda.monthlyday, "when":[2,1,5,1]]

• const yearlydate = Repeat yearly, at a given date.

Repeat the entry every interval years, on the date implied by the entry’s
start date. This repeat type is typically used for anniversaries.

// repeat every year
e["rep"]=["type":agenda.yearlydate]

• const yearlyday = Repeat yearly, at a given day of a

week of a month.

Repeat the entry every interval years, on the day indicated by when:
when[0] indicates the month, when[1] the week of the month (1 ist the first,
4 is the fourth, 5 is the last), and when[2] the day of week (0 is Monday).

// repeat yearly, on Sunday (6) of the 1st week in April
e["rep"]=["type":agenda.yearlyday,"when":[4,1,6]]

106 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 5.1. Module agenda: Agenda Database

agenda.add

• function add(entry)→ Number

Permissions: WriteApp

Add an entry to the agenda database, and return its id. The entry must be
an array with keys from the above tables. The entry type is derived from the
flags array element; if there is no flags element, an agenda.appt entry
is added.

// Add a 30 minute meeting starting in two hours,
// in the CEO’s office
start=time.get()+2*3600;
e=["text":"Group meeting",

"flags":agenda.appt,
"start":start,
"end":start+1800,
"loc":"CEO’s office"];

agenda.add(e)
→ 402653204
// Add an anniversary, repeating every year
e=["text": "Shakespeare’s Birthday",

"flags": agenda.anniv,
"start": time.num("2005-04-23"),
"base": 1564,
"rep": ["type":agenda.yearlydate]];

agenda.add(e)
→ 117440532

agenda.delete

• function delete(id)→ null

Permissions: WriteApp

Delete the contact with the given id.
Throws ErrNotFound if there is no such contact.

// delete the anniversary added in the add example
agenda.delete(117440532)

m Mobile Shell Library Version 2.01 107

5. Personal Data c© 2007 infowing AG

agenda.find

• function find(start=null, end=null, flags=agenda.appt
| agenda.event | agenda.anniv |
agenda.rep)→ Array

Permissions: ReadApp

Searches the agenda for entries overlapping with the period between start

and end, and with an entry type indicated by flags. The default flags ex-
clude to-do list entries.
Repeated entries are only reported if the first repetition falls within the period.
Use agenda.findall (p. 109) to find all events within a period, including
repetitions.
start and end must be given in seconds since year zero; start=null indi-
cates the earliest possible start date, end=null the latest possible end date.

// get the number of entries in the agenda
print len(agenda.find(null, null, agenda.all))
→ 53
// print the text and start of today’s entries
today=86400*math.trunc(time.get()/86400);
for id in agenda.find(today,today+86400) do
e=agenda.get(id);
print e["text"], time.str(e["start"], "hh:mm")

end
→ ...

Group meeting 18:40
...

// delete all entries up to now, excluding repetitives
for id in agenda.find(null, time.get(),

agenda.all & ˜agenda.rep)
agenda.delete(id)

end

108 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 5.1. Module agenda: Agenda Database

agenda.findall

• function findall(start, end, flags=agenda.appt |
agenda.event | agenda.anniv |
agenda.rep)→ Array

Permissions: ReadApp

This is similar to agenda.find (p. 108), except that all instances of repeated
entries are reported if they fall within the period. The function returns an array
with an element for each instance found. Each element is again an array with
the following elements:

Key Meaning
id The id of the entry, as returned by agenda.find.
at The start time of the instance. For a non-repeated entry,

this is the same as the entry’s start time. For a repeated
entry, this is the start time of the instance falling within
the selected period.

// print the text and start of today’s instances
today=86400*math.trunc(time.get()/86400);
for idtime in agenda.findall(today,today+86400) do
e=agenda.get(idtime["id"]);
print e["text"], time.str(idtime["at"], "hh:mm")

end
→ ...

Group meeting 18:40
Weekly Yoga session 20:30
...

agenda.get

• function get(id)→ Array

Permissions: ReadApp

Get the fields of the agenda entry with id id.
Throws ErrNotFound if there is no entry with this id.

m Mobile Shell Library Version 2.01 109

5. Personal Data c© 2007 infowing AG

// get the entry added before
e=agenda.get(402653204);
print e
→ [Group meeting,1,63284611200,63284613000,

CEO’s office]
print time.str(e["start"])
→ 2005-05-17 18:40:00

agenda.set

• function set(id, entry)→ null

Permissions: WriteApp

Updates the entry with id id, updating the fields in array entry. entry must
be an array with keys from the above tables. Fields which are null in the
array are cleared in the entry.

// Change the location of the group meeting
agenda.set(402653204, ["loc":"My office"])
// Set all done entries in the to-do list to "not done"
ids=agenda.find(null, null, agenda.todo | agenda.done);
for id in ids do
agenda.set(id, ["done":null])

end

5.2 Module contacts: Contacts Database

This module allows to read and manipulate the contacts stored on the phone.
In the phone’s database, a contact is identified by its id, an integer number.

Contact Fields

In m, a contact is represented as an array whose elements are the fields of the
contact. Fields are identified by their (array) keys. m recognizes the following
keys, with the corresponding data type:

110 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 5.2. Module contacts: Contacts Database

Key Meaning
adr Address (street)
birth Birthday
cell Cellphone number
company Company name
country Country
email e-mail address
extadr Additional address
extname Additional name
fax Fax number
fname First name
loc Locality (city)
name (Family) name

Key Meaning
note Contact note
pager Pager number
phone Voice phone number
pict Picture image data
po Post Office
region Region
ring Ringtone file name
text Free text
title Job Title
url Website URL
video Video phone number
zip Post Code

Key names are not case sensitive.
The order of fields in the array describing a contact is arbitrary. Arrays re-
turned by functions in this module always start with the two fields name and
fname, if these fields exist.
Address and phone number fields can have one of the following suffices:

Suffix Meaning
.home Home address or phone
.work Work address or phone

For instance, phone.home refers to the home phone number, phone.work
to the work phone number. phone without suffix is unspecified.
Most fields are represented as strings. There are two exceptions:

• birth: The birthday is stored as a number indicating the seconds since
year zero. This is the format used by module time (p. 48).

• pict: The picture is stored as an array containing the image data, typ-
ically in JPEG format. Example functions to load or store a the picture
of a contact c:

m Mobile Shell Library Version 2.01 111

5. Personal Data c© 2007 infowing AG

use io
function loadpict(file, c)
f=io.open(file);
s=io.read(f, io.size(f)); // read whole file
io.close(f);
c["pict"]=code(s) // string to byte array

end
function storepict(c, file)
if c["pict"]#null then
s=char(c["pict"]); // byte array to string
f=io.create(file);
io.write(f, s);
io.close(f)

end
end

Note that the builtin contacts application in the phone may not support all
keys, or display some of them in a strange way. Furthermore, not all appli-
cations clearly separate home from work data. Hence, the cell phone number
of a person is sometimes stored as cell, sometimes as cell.work or as
cell.home.
The functions of this module throw ExcInvalidParam if a contact array has
no keys, or ErrBadName if a contact array has a key which is not in the above
table.

contacts.add

• function add(contact)→ Number

Permissions: WriteApp

Add a contact to the database, and return its id. The contact must be an array
with keys from the above tables.

c=["name": "Shakespeare",
"fname": "William",
"loc.home": "Stratford-upon-Avon"],
"loc.work": "London",
"birth": time.num("1564-04-23")];

contacts.add(c)
→ 114

112 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 5.2. Module contacts: Contacts Database

contacts.delete

• function delete(id)→ null

Permissions: WriteApp

Delete the contact with the given id.
Throws ErrNotFound if there is no such contact.

// delete the contact added in the add example
contacts.delete(114)

contacts.find

• function find(text=null, keys=["name","fname"],
sort=[])→ Array

Permissions: ReadApp

Searches the contact database for entries matching text considering the
fields specified in keys, and returns the ids of the matching contacts sorted
by the fields specified in sort:

• If text=null, all entries are returned, and keys is ignored.

• If text#null, searches the contact database for all entries matching
the words in text when considering the fields defined by keys. Both
text and all fields from the database are split into words (sequences of
characters or digits) before comparing them. An entry matches if all of
the words in text are found in any of the fields considered. Words can
also be abbreviated: William matches both W or Will in the search
text.
If keys defines a single field, it can be a string, otherwise it must be an
array of strings.

• If sort=[], the ids are sorted by their ascending numeric value.

• If sort is a string, the ids are sorted by the corresponding field.

• If sort is an array, the ids are sorted by the corresponding fields, from
highest to lowest sort order.

m Mobile Shell Library Version 2.01 113

5. Personal Data c© 2007 infowing AG

Throws ErrArgument if there are more than 32 keys or sort keys specified.

// get the number of contacts in the database
print len(contacts.find())
→ 104
// print these contacts, sorted by name and first name
for id in contacts.find(null,null,["name", "fname"]) do
c=contacts.get(id);
print c[1], c[0]

end
→ ...

William Shakespeare
...

// Will matches William; so does W
print contacts.find("Will Shakespeare")
→ [114]
print contacts.find("W. Shakespeare")
→ [114]
// get the ids of everybody living or working in London
print contacts.find("London", "loc")
→ [45,67,89,90,91,114]
// Stratford-upon-Avon is considered three words,
// so Avon matches
print contacts.find("Avon", "loc")
→ [114]

contacts.findnr

• function findnr(number, digits=8)→ Array

Permissions: ReadApp

Retrieves the ids of the entries matching the given phone number. Only the
last digits digits in number are considered when comparing. The minimum
for digits is 7.
This function is much faster than find, and more useful, as it only looks at
digits, and the end of the phone numbers.
Throws ExcValueOutOfRange if digits is out of range.

print contacts.findnr("+41(079)7654321", 9)
→ [28]

114 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 5.2. Module contacts: Contacts Database

contacts.get

• function get(id, keys=null)→ Array

Permissions: ReadApp

Get fields of the contact with id id. If keys=null, returns all fields defined
for the contact. If keys#null, returns only the fields specified in keys. keys
can be a single string specifying a single field, or an array specifying multiple
fields.
If they exist, the fields name and/or fname are at the beginning of the returned
array.
Throws ErrNotFound if there is no contact with this id; throws
ErrArgument if there are more than 32 keys specified.

c=contacts.get(114);
print c
→ [Shakespeare,William,Stratford-upon-Avon,London,

49365849600]
print time.str(c["birth"])
→ 1564-04-23 00:00:00
print contacts.get(114, ["name", "fname"])
→ [Shakespeare,William]
c=contacts.get(114, "loc");
print c
→ [Stratford-upon-Avon,London]
print keys(c)
→ [loc.home,loc.work]

contacts.labels

• function labels(keys=null)→ Array

Get labels for the fields. Labels are language dependent. keys is interpreted
as follows:

• If keys=null, returns all standard labels.

• If keys is a string, returns the label(s) for the corresponding field(s).

• If keys is an array, returns the labels for the corresponding fields.

m Mobile Shell Library Version 2.01 115

5. Personal Data c© 2007 infowing AG

Throws ErrArgument if there are more than 32 keys specified.
Suffices (.home, .work) can be used as keys, but not as field suffices:
labels() throws ErrBadName in this case.
If they exist, the labels for name and/or fname are at the beginning of the
returned array.
The label array has the same keys as a contact.

l=contacts.labels();
print l
→ [Last name,First name,Tel. (home),Mobile

(home),Fax (home),E-mail (home),Web addr. (home),
Street (home),...<46>]

l["title"]
→ Job title
// print a contact with all its labels
c=contacts.get(114);
for k in keys(c) do
print l[k], "-", c[k]

end
→ Last name - Shakespeare

First name - William
City (home) - Stratford-upon-Avon
City (business) - London
Birthday - 49365849600

// get all work related labels
print contacts.labels([".work"])
→ [Tel. (business),Mobile (business),Fax

(business),E-mail (business),Web addr. (bus.),Street
(business),...<12>]

contacts.labels("phone.work")
→ ErrBadName thrown

contacts.new

• function new(time)→ Array

Permissions: ReadApp

Returns the list of contacts modified since the specified point in time. time
is the number of seconds since year 0 UTC. See also module time (p. 48).

116 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 5.2. Module contacts: Contacts Database

// get the entries changed within the last ten minutes
print contacts.new(time.utc()-10*60)
→ [114]

contacts.own

• function own()→ Number

Permissions: ReadApp

• function own(id)→ Number

Permissions: ReadApp+WriteApp

There is a single contact in the database which can be marked as own contact,
indicating the owner of the phone (or any other particular person). Some
phones can use this information to quickly send a vCard1 of the phone owner.
Without an argument, the id of this contact is returned. With an argument, the
own contact id is set to id, and the old one is returned.
Returns -1 if no own contact has been set, or it has been deleted.
Throws ErrNotFound if there is no contact with this id.

// if there is no owner, make it the first Shakespeare
if contacts.own()=-1 then
ids=contacts.find("Shakespeare");
if len(ids)>0 then
contacts.own(ids[0])

end
end

contacts.set

• function set(id, contact)→ null

Permissions: WriteApp

Updates the contact with id id, updating or adding fields in array contact.
contact must be an array with keys from the above tables.

1A standard defined by the Internet Mail Consortium, see
www.imc.org/pdi/vcardoverview.html.

m Mobile Shell Library Version 2.01 117

http://www.imc.org/pdi/vcardoverview.html

5. Personal Data c© 2007 infowing AG

Fields already existing in the database are updated, the other fields are added.
Fields not in the array are not modified. Fields which are null in the array
are removed from the contact.

// Replace all +41 1 numbers by +41 44
const fields=["phone", "fax", "cell", "pager"]);
for id in contacts.find() do
c=contacts.get(id, fields);
m=false;
for i=0 to len(c)-1 do
// field could be null or too short
if c[i]!=null then
n=trim(c[i]);
if len(n)>=11 then
// replace +411 by +4144
if substr(n,0,4)="+411" then
c[i]="+4144" + substr(n, 4); m=true

// replace +41 1 by +41 44
elsif substr(n,0,5)="+41 1" then
c[i]="+41 44" + substr(n, 5); m=true

end
end

end
end;
if m then
contacts.set(id, c)

end
end

118 m Mobile Shell Library Version 2.01

c© 2007 infowing AG

6. Communications

6.1 Module bt: Bluetooth Communication

This module provides access to Bluetooth R© wireless communication with
other Bluetooth equipped devices. The supported functions are:

• Obtaining the own bluetooth address and name, and modifying the lat-
ter.

• Getting and setting the Bluetooth visibility flag.

• Scanning for visible devices and obtaining the address, name and class,
also interactively.

• Creation of services (passive connections), either directly using a chan-
nel number, or by registering with an UUID for service discovery.

• Connecting to services (active connections), either directly using a
channel number, or by looking an UUID up via service discovery.

Terminology

Bluetooth is a relatively complex technology. The following is a quick crash
course of the key concepts required to completely understand this module.
For more information and detailed specifications, see www.bluetooth.org.

• Device Address: Each Bluetooth device is identified by a unique
48 bit address. In this module, an address is a string of six hex-
adecimal bytes, separated by colons, e.g. "00:E0:03:5E:AF:CD", or
"0:e0:3:5e:af:cd".

• Device Name: Each Bluetooth device can have a freely assignable
name. A well chosen name helps in distinguishing visible devices, but
is of little use when trying to automatically identify or find a device.

m Mobile Shell Library Version 2.01 119

http://www.bluetooth.org
http://www.bluetooth.org

6. Communications c© 2007 infowing AG

• Device Class: Each Bluetooth device has a class defining its type and
capabilities. The device class is a 24 bit integer, encoded as follows:

Bits Value Contents
0-1 Always zero
2-7 Minor device class:

interpretation depends on Major device class
8-12 Major device class:

0 Miscellaneous
1 Computer
2 Phone
3 LAN/Network access point
4 Audio/Video
5 Peripheral (mouse, joystick, keyboard)
6 Imaging (printer, display, scanner, camera)
7 Wearable

31 Uncategorized
13-23 Service class:

16 1 Positioning (GPS)
17 1 Networking (LAN)
18 1 Rendering (Video and Audio)
19 1 Capturing (Video and Audio)
20 1 Object Transfer (vCal, vCard)
21 1 Audio
22 1 Telephony
23 1 Information (WWW/WAP-Servers)

• SDP (Service Discovery Protocol): A mechanism to advertise ser-
vices (e.g. data synchronization, printing, scanning, or own services),
and discover them. Services are identified by UUIDs.

• UUID (Universally Unique Identifier): This is a 128 bit (16 byte)
quantity. In Bluetooth, each service has one or more UUIDs as-
signed: when creating a service, a UUID should be assigned to it (see
bt.start (p. 127)).

In this module, a UUID is represented as an array of four nonnegative
numbers, starting with bits 127 to 96, and ending with bits 31 to 0. See
also bt.uuid (p. 129).

120 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.1. Module bt: Bluetooth Communication

In Bluetooth, often only 32 bits of the UUID are specified. Such an
UUID maps to a 128 bit UUID by adding fixed values for the lower 96
bits:

u=bt.uuid(12345);
print u
→ [12345,4096,2147483776,1604007163]
for v in u do print hexstr(v) end
→ 3039

1000
80000080
5f9b34fb

A few of the standard 32 bit UUIDs are:
Hex Decimal Service Class

3 3 RFCOMM
100 256 L2CAP

1101 4353 Serial Port
1103 4355 Dialup Networking
1105 4357 Obex (Object Exchange)
1111 4369 Fax
1204 4612 Generic Telephony

• RFCOMM (Radio Frequency Communications): Provides reliable
communication between two Bluetooth devices. This corresponds to
the TCP layer in the Internet world.

• Channel: An integer identifying an RFCOMM communication stream.
This corresponds to a port number in the Internet world. A service can
be reached by a device address and a channel number.

Connections Are Streams

Once created, a Bluetooth connection is accessed via module io (p. 35):

• io.read, io.readln, and io.readm receive data,

• io.write, io.writeln, io.writem, io.print, and io.println

send data,

m Mobile Shell Library Version 2.01 121

6. Communications c© 2007 infowing AG

• io.avail gets the number of bytes which can be read without block-
ing,

• io.wait waits for data which can be read without blocking,

• io.close closes the connection.

• io.ces gets and sets the character encoding scheme. As with files, the
default is io.raw.

• io.timeout sets the timeout for send and receive operations.

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is sent.

Simple Example

To illustrate use of the m Bluetooth module, a trivial client-server example is
presented. The server reverses each line of input it receives.
Client code:

use bt, io
// have the user select a device
dev=bt.select();
// connect to server
s=bt.conn(dev["adr"], "Reverser");
// write a line
io.writeln(s, "Hello world!");
// read the result
print io.readln(s)
→ !dlrow olleH
// and again
io.writeln(s, "Bye server");
print io.readln(s)
→ revres eyB
io.close(s)

122 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.1. Module bt: Bluetooth Communication

Server code:

// a function which reverses a string
function reverse(s)
c=code(s);
i=0; j=len(c)-1;
while i<j do
h=c[i]; c[i]=c[j]; c[j]=h; i++; j--

end;
return char(c)

end

use bt, io
// create and advertise a service called "Reverser"
service=bt.start("Reverser");
while true do // loop forever
// wait for a client
io.print(io.stdout, "Waiting...");
s=bt.accept(service);
print bt.adr(s),"ok.";
// read each line, writing it back reversed
line=io.readln(s);
while line#null do
io.writeln(s, reverse(line));
line=io.readln(s)

end;
io.close(s)

end
→ Waiting...00:0E:07:C9:EE:88 ok.

Waiting...

bt.accept

• function accept(service)→ Native Object

Permissions: FreeComm

Marks service available, then waits for a device connecting to service.
When a device connects successfully, marks service as unavailable, and
returns the connection stream.
See bt.start (p. 127) for an example.

m Mobile Shell Library Version 2.01 123

6. Communications c© 2007 infowing AG

bt.adr

• function adr(stream)→ String

Permissions: FreeComm

• function adr()→ String

Permissions: FreeComm

With one argument, returns the Bluetooth address of the device stream is
connected to.
Without arguments, returns the local (own) Bluetooth address.

s=bt.accept(service);
// who connected?
print bt.adr(s)
→ 00:0E:07:C9:EE:88
// our own bluetooth address
print bt.adr()
→ 00:E0:03:5E:AF:CD

bt.chan

• function chan(service)→ Array

Permissions: FreeComm

• function chan(adr, uuid)→ Array

Permissions: FreeComm

With one argument, returns the channel number of service, in an array with
the service name as key.
With two arguments, queries the service discovery database of the device with
address adr for all services with the service class UUID defined by uuid, and
returns their channel numbers in an array with the service names as keys. See
bt.uuid (p. 129) for the values allowed for uuid.

124 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.1. Module bt: Bluetooth Communication

// create a service on a fixed channel
s=bt.start("Sample", 18);
// obtain the channel of the service
c=bt.chan(s);
print c, keys(c)
→ [18] [Sample]
// query a device for all Obex services
c=bt.chan("00:0E:07:C9:EE:88", 4357);
print c, keys(c)
→ [9] [OBEX Object Push]
// query a device for all services using RFCOMM
c=bt.chan("00:0E:07:C9:EE:88", 3);
print c, keys(c)
→ [1,2,10,9,15,11,12,3] [Hands-Free Audio Gateway,

Headset Audio Gateway,OBEX File Transfer,OBEX Object
Push, Imaging,SyncMLClient,...<8>]

bt.conn

• function conn(adr, uuidOrChannel)→ Native Object

Permissions: FreeComm

If uuidOrChannel is an array or a string, queries the service discovery
database of the device with address adr for the first service with the ser-
vice class UUID defined by uuidOrChannel, then connects to the service’s
channel.
If uuidOrChannel is a number, connects directly to channel
uuidOrChannel of the device with address adr, without querying the
database.

// connect to the Obex service on a device
dev="00:0E:07:C9:EE:88";
s=bt.conn(dev, [4357]);
io.close(s)
// connect to channel 18 on the same device
s=bt.conn(dev, 18);
io.close(s)

m Mobile Shell Library Version 2.01 125

6. Communications c© 2007 infowing AG

bt.name

• function name()→ String

Permissions: FreeComm

• function name(newname)→ String

Permissions: FreeComm+WriteApp

Without an argument, returns the local (own) device name. With a single
argument, set the local device name to newname and returns the old name.

// change the name, returning the old one
print bt.name("Test Device #1")
→ Nokia 6670
// get the current name
print bt.name()
→ Test Device #1

bt.scan

• function scan(limited=false)→ Array

Permissions: FreeComm

• function scan()→ Array

Permissions: FreeComm

With a single argument, scans for other visible bluetooth devices in the neigh-
borhood, and returns the first device found, or null if there is no visible de-
vice.
If limited=false, the scan is performed with general unlimited inquiry ac-
cess code (IAC), returning all devices.
If limited=true, the scan is performed with the faster limited IAC, but only
returning devices which are scanning with limited IAC.
Without an argument, continues scanning, and returns the next device found,
or null if there are no more devices.
Making an SDP request (bt.chan, bt.conn) ends the current scan, i.e. the
next call to bt.scan will always start a new scan.
Each device found is returned as an array with the following keys:

126 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.1. Module bt: Bluetooth Communication

Key Meaning Type
adr Device address String
name Device name String
class Device class Integer

dev=bt.scan(false);
// print each device
while dev#null do
print dev;
// get the next device
dev=bt.scan()

end
→ [00:E0:03:5E:AF:CD,Test Device #1,5243404]
→ [00:0E:07:C9:EE:88,Test Device #2,5251596]

bt.select

• function select()→ Array

Permissions: FreeComm

Shows an interactive dialog scanning for Bluetooth devices and allowing the
user to select one. Returns the selected device in the same format as returned
by bt.scan (p. 126), or null if the user cancelled the selection.

print bt.select()
→ [00:E0:03:5E:AF:CD,Test Device #1,5243404]

bt.start

• function start(name, uuidOrChannel=null,flags=0)→
Native Object

Permissions: FreeComm

Creates a service with name name and returns it. To accept an incoming
connection on the service, use bt.accept (p. 123).
If uuidOrChannel is an array or a string, bt.start finds an unused chan-
nel and creates a service with the UUID defined by uuidOrChannel. The
service is advertised in the service discovery database of the device.

m Mobile Shell Library Version 2.01 127

6. Communications c© 2007 infowing AG

uuidOrChannel=null is equivalent to uuidOrChannel=name.
If uuidOrChannel is a number, listens directly on channel
uuidOrChannel, without advertising the service.
The security imposed on incoming connections is defined by flags, which
is a combination of the following values:
• const authenticate = 1 Connecting devices must be paired, or mu-
tual password authentication is requested.
• const encrypt = 2 Data transfers are encrypted.
• const authorise = 4 The user is asked for authorisation whenever a
device attempts to connect to the channel.

// create a service with the UUID of the Fax
// service class, and asking for authorisation
service1=bt.start("My Fax", [4369], bt.authorise);
// wait for a connection
conn=bt.accept(service1);
...
// create a service listening on channel 18
service2=bt.start("Sample", 18);
conn2=bt.accept(service2);
...

bt.stop

• function stop(service)→ null

Permissions: FreeComm

Stops service. If it has been advertised, it is removed from the service
discovery database.

bt.timeout

• function timeout()→ Number

Permissions: FreeComm

• function timeout(ms)→ Number

Permissions: FreeComm

128 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.1. Module bt: Bluetooth Communication

Gets or sets the timeout used during most functions of this module. Without
arguments, returns the current timeout in milliseconds. With one argument,
returns the old timeout, and sets the new timeout to ms. Setting the time-
out to zero (the default) or a negative value disables timeouts, i.e. Bluetooth
operations can block indefinitely, or use a timeout defined by the underlying
system.
Throws ExcValueOutOfRange if ms exceeds 2147483 (35 minutes and
47.483 seconds).
The timeout is used in all following calls: whenever an operation does not
complete within the given number of milliseconds, it throws ErrTimedOut.

// allow 10 seconds to connect
bt.timeout(10000);
try
s=bt.conn("00:E0:03:5E:AF:CD", 4)
// connection successful...

catch e by
if index(e, "ErrTimedOut") # 0 then throw e end;
print "Could not connect within 10 seconds"

end

bt.uuid

• function uuid(uuid)→ Array

Permissions: FreeComm

Converts a number, string or array to a 128 bit UUID, and returns the UUID
as an array of four integers.

• If uuid is a number, uuid is considered a 32 bit Bluetooth UUID.

• If uuid is an array with one element, its only element is considered a
32 bit Bluetooth UUID.

• If uuid is an array with four elements, they are considered the four 32
bit values making up the entire 128 bit UUID (from highest to lowest).

• If uuid is a string with two characters or less, the characters are con-
sidered a 16 bit Bluetooth UIID.

m Mobile Shell Library Version 2.01 129

6. Communications c© 2007 infowing AG

• If uuid is a string with three or four characters, the characters are con-
sidered a 32 bit Bluetooth UIID.

• If uuid is a string with more than four characters, its first 16 charac-
ters are considered the 16 bytes of the UUID (from highest to lowest).
Missing bytes are assumed zero.

All other values throw ErrArgument.

print bt.uuid(12345);
→ [12345,4096,2147483776,1604007163]
print bt.uuid([12345]);
→ [12345,4096,2147483776,1604007163]
print bt.uuid("Sample")
→ [1398893936,1818558464,0,0]
print bt.uuid([1,2])
→ ErrArgument thrown

bt.visible

• function visible()→ Boolean

Permissions: FreeComm

• function visible(newvisible)→ Boolean

Permissions: FreeComm+WriteApp

Capabilities: all

Compatibility of function bt.visible

Nokia phones before Symbian 8a ok
Nokia phones with Symbian 8b ErrNotSupported

Symbian 3rd Edition and Sony Erics-
son phonesc

ErrNotSupported

aChanging the visibility is not reflected in the phone’s settings UI.
bParts of the Bluetooth API are not available on these phones.
cThe visibility flag can only be read, but not set.

Without an argument, returns the current visibility state of this device: true if
the device is detectable by others, false if it is not visible. With an argument,
sets the visibility to newvisible, and returns the old visibility state.

130 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.2. Module comm: Serial Communications

// make the device visible
bt.visible(true)
// is it visible?
print bt.visible()
→ true

6.2 Module comm: Serial Communications

This module provides access to the (usually software emulated) serial ports of
the phone. Each communications device capable of performing serial com-
munications is identified by its name (“module name” in Symbian OS). Serial
communication is often emulated by a device capable of multiplexing, a de-
vice may offer multiple units.
Often available devices are:

Device Name Unit
USB Serial Port ecacm 1

Infrared (IrDA) ircomm 0

Bluetooth Serial Port btcomm 0

Note that not all devices are available on all phones, e.g. because the hardware
or the appropriate driver are missing. Furthermore, the names and available
units may also differ between phone models. Some units may already be used
by the system software on the phone. A bit of try and error may be required
to create a working connection.
Because of all these restrictions, use of serial communications should be
avoided in m applications designed to be portable.

Serial Ports Are Streams

Once created, a serial port is accessed via module io (p. 35):

• io.read, io.readln, and io.readm receive data,

• io.write, io.writeln, io.writem, io.print, and io.println

send data,

• io.avail gets the number of bytes which can be read without block-
ing,

m Mobile Shell Library Version 2.01 131

http://www.symbian.com

6. Communications c© 2007 infowing AG

• io.wait waits for data which can be read without blocking,

• io.close closes the connection.

• io.ces gets and sets the character encoding scheme. As with files, the
default is io.raw.

• io.timeout sets the timeout for send and receive operations.

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is sent.

comm.config

• function config(port)→ Array

• function config(port,config)→ Array

Permissions: FreeComm

With one parameter, gets the configuration of the serial port port. port must
have been obtained via comm.open (p. 133).
With two parameters, sets the configuration from the fields in the array
config, and returns the old configuration.
Configurations are represented by an array with the following elements:

Key Meaning Type
bps Speed of the port (bits per second) Integer
data Number of data bits (5 to 8) Integer
stop Number of stop bits (1 to 2) Integer
parity Parity bit (0 to 4 corresponding to none, even, odd,

mark, space)
Integer

terms Characters considered terminators String

// open an infrared port
s=comm.open("ircomm", 0)
// set it to 4 Mbit/s, 8 data and 1 stop bit, no parity
print comm.config(s, ["bps":4000000, "data":8,

"stop":1, "parity":0])
→ [9600,8,1,0,]

132 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.2. Module comm: Serial Communications

comm.link

• function link(port,timeout=-1)→ Boolean

Attempts to establish a link open for reading and writing, waiting until the
other end allows writing. Returns true as soon as the link is up.
If timeout>=0 and timeout milliseconds have passed without the link com-
ing up, false is returned.
Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).
Reading from or writing to the port will also establish a link.
See comm.signal (p. 134) for an example.

comm.open

• function open(name,unit,dceRole=false)→ Native Object

Permissions: FreeComm

Opens a serial port for communication over the device with name name, using
unit unit, and returns a stream object representing the port. unit must be in
the range returned by comm.units (p. 134). If dceRole=false, the serial
port is working as a data terminal equipment; if dceRole=true, it is working
as a data computer equipment.
Throws ErrNotFound if a device with this name does not exist. Throws
ExcIndexOutOfRange if the unit is not within the range returned by
comm.units (p. 134).
The following example communicates with a PC over the USB cable. If you
use a terminal application on the PC communicating over the corresponding
port1, the tiny program will echo every line typed into the terminal applica-
tion, converted to uppercase.

// Open a port to communicate with a PC
s=comm.open("ecacm", 1);
while true do
l=io.readln(s);
io.writeln(s, upper(l))

end

1On Windows, the port number (e.g. COM3) can usually be found in the hardware manager.

m Mobile Shell Library Version 2.01 133

6. Communications c© 2007 infowing AG

comm.signal

• function signal(port)→ Number

• function signal(port,signals,mask=0x3f)→ Number

Permissions: FreeComm

With one parameter, gets the (input) signals of the serial port port. port

must have been obtained via comm.open (p. 133).
With two parameters, sets the (output) signals of the serial port contained in
mask to the corresponding bit values in signals.
The signal bits are:
• const cts = 1 Clear to send signal (input).
• const dcd = 4 Data carrier detect signal (input).
• const dsr = 2 Data set ready signal (input).
• const dtr = 32 Data terminal ready signal (output).
• const rts = 16 Ready to send signal (output).

// open an infrared port
s=comm.open("ircomm", 0)
// wait until a connection appears
print comm.link(s)
→ true
// wait until the connection disappears again
while comm.signal(s) & comm.dsr # 0 do
sleep(1000); print comm.signal()

end
→ 3

...
3
0

comm.units

• function units(name)→ Array

Permissions: FreeComm

Gets the range of units the device with name name supports. The range is
returned as [minUnit,maxUnit].

134 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.3. Module net: TCP/IP Networking

Throws ErrNotFound if a device with this name does not exist.

// Get the units of the IrDA device
print comm.units("ircomm")
→ [0,15]

6.3 Module net: TCP/IP Networking

This module supports creation of active TCP connections to hosts anywhere
on the Internet. Secure connections based on SSL or TLS are also supported,
as well as simple host name and IP address resolution.
Listening for incoming (passive) connections is also possible. Keep in mind
that this generally only makes sense for local connections to 127.0.0.1, as
the phone is usually part of a private network and not visible to the rest of the
internet.
This module does not support IPv6.

Connections Are Streams

Once created, a TCP/IP connection, whether secure or unsecure, is accessed
via module io (p. 35):

• io.read, io.readln, and io.readm receive data,

• io.write, io.writeln, io.writem, io.print, and io.println

send data,

• io.avail gets the number of bytes which can be read without block-
ing,

• io.wait waits for data which can be read without blocking, or for an
incoming connection,

• io.close closes the connection or listening socket.

• io.ces gets and sets the character encoding scheme. As with files, the
default is io.raw.

• io.timeout sets the timeout for send, receive and wait operations.

m Mobile Shell Library Version 2.01 135

6. Communications c© 2007 infowing AG

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is sent.

Internet Access Points

Except for local connections, using TCP/IP requires the phone to connect to
an IAP (Internet Access Point), typically via GPRS or UMTS. The TCP/IP
functions of the phone deal with these automatically, depending on the phone
configuration. The net module provides limited support to manage IAP
connections: see net.iap (p. 139), net.start (p. 143) and net.stop

(p. 144).

net.accept

• function accept(pstream)→ Native Object

Permissions: CostComm

Waits for a new incoming connection on the port defined by pstream, and
returns it as a stream.
pstream is a passive stream which is obtained by call to net.listen

(p. 140). See there for a complete example.

net.adr

• function adr(hostname)→ Array

Permissions: CostComm

• function adr()→ Array

Permissions: CostComm

Resolves a host name to its IP address or addresses. The addresses are re-
turned as an array of strings, each string representing the IP address in the
standard dot notation.
Without arguments, returns the local (own) IP address. Getting the local IP
address is not supported on all connections and may throw ErrTimedOut.

136 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.3. Module net: TCP/IP Networking

print net.adr(’www.google.com’)
→ [216.239.59.103,216.239.59.104,

216.239.59.99,216.239.59.147]
print net.adr()
→ [10.122.18.7]

net.cert

• function cert(stream)→ Array

Permissions: CostComm

Gets the X.509 server certificate of the secure connection stream. The cer-
tificate identifies and (if it is valid) authenticates the host the connection has
been made to.
This function returns null if stream is not secure.
The certificate is returned as an array with the following keys:

Key Meaning Type
subject Certified subject (in X.500 format) Array
issuer Certificate issuer (in X.500 format) Array
version Certificate version Integer
serial Certificate serial number String
start Start of validity period Seconds
end End of validity period Seconds
md5 Fingerprint of certificate (MD5 hash) String

subject and issuer are arrays containing key-value pairs, with the keys
being hierarchical OID numbers. For instance, the key "2.5.4.3" stands
for ”Common Name”, and "2.5.4.10" for ”Organization Name”.
start and end define the validity period of the certificate, in seconds since
year zero, as used by module time (p. 48).
serial and md5 encode each byte as a string character; use .code (p. 8) to
convert them to single bytes.

m Mobile Shell Library Version 2.01 137

http://asn1.elibel.tm.fr/en/oid/index.htm

6. Communications c© 2007 infowing AG

// connect to a secure Web server
s=net.conn("www.yellownet.ch", 443, net.ssl);
// send a request
io.write(s, ’GET / HTTP 1.1\r\n\r\n’);
// read the first four lines
for i=1 to 4 do
print io.readln(s)

end
→ HTTP/1.1 302 Found

Date: Tue, 24 May 2005 12:47:08 GMT
Server: Stronghold
Location: https://www.postfinance.ch/

// look at the certificate
c=net.cert(s);
print c["subject"]["2.5.4.3"]
→ www.yellownet.ch
print c["subject"]["2.5.4.10"]
→ Die Schweizerische Post
// close the connection
io.close(s)

net.conn

• function conn(host, port, secure=null, silent=false,
authName=null)→ Native Object

Permissions: CostComm

Connects to the host host on TCP/IP port port. host can be a host name
(e.g. "www.m-shell.net"), or an IP address (e.g. "212.117.205.10").
If secure=null, the connection is unsecure. To secure the connection, use
one of the following constants:
• const ssl = "SSL3.0" Use SSL (Secure Sockets Layer) 3.0.
• const tls = "TLS1.0" Use TLS (Transport Layer Security) 1.0.
If silent=false, the user will be prompted when the certificate presented
by the server cannot be authenticated or has expired, giving the user the op-
portunity to accept the certificate for this session.
If silent=true, an invalid certificate will simply throw
ErrCertificateUnknown, or some other SSL exception.

138 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.3. Module net: TCP/IP Networking

authName indicates the expected name authenticated by the certificate. If
authName=null, it defaults to host.

Compatibility of Secure Connections
Sony Ericsson phones Unreliable, may hang

// connect to Infowing’s SMTP mail server
s=net.conn("mail.infowing.ch", 25);
// read the prompt
print io.readln(s)
→ 220 mail.infowing.ch Microsoft ESMTP MAIL

Service, Version: 6.0.3790.1830 ready at Tue, 24
May 2005 13:58:44 +0200

// immediately logout again
io.write(s, "QUIT\r\n");
// read the goodbye message
print io.readln(s)
→ 221 2.0.0 mail.infowing.ch Service closing

transmission channel
// close the connection
io.close(s)

For a secure connection example, see net.cert (p. 137).

net.iap

• function iap()→ Array

Permissions: CostComm

• function iap(setting)→ Array

Permissions: CostComm+WriteApp

Capabilities: extended

Sets and gets the preferred Internet Access Point (IAP) to use. The preferred
IAP setting consists of an array with three elements:

Index Meaning Type
0 Prompt user for IAP when connecting Boolean
1 Preferred IAP index Number
2 Bearer set supported by this IAP Number

m Mobile Shell Library Version 2.01 139

6. Communications c© 2007 infowing AG

The preferred IAP index corresponds to an entry in the IAP table in the phone.
The bearer set defines the set of bearers supported by this IAP. In most cases,
only the “prompt user” flag is of interest, as changing the IAP is rarely re-
quired under normal use.
To obtain an IAP index and its bearer set, set the “prompt user” flag to
true, cause a connection to the IAP (e.g. by resolving a name), then call
iap.net() (this only works if there is no valid connection to an IAP)
Without arguments, this function returns the current preferred IAP setting.
With a single boolean argument, it returns the old setting and sets the “prompt
user” flag. With an array argument, it updates the corresponding entries, de-
pending on the length of the array (1 to 3 elements).

// get current setting
s=net.iap();
print s
→ [false,14,3]
// change the preferred IAP to 2, but enable prompting
net.iap([true, 2])
// disable prompting
net.iap(false)
// restore the old setting
net.iap(s)

net.listen

• function listen(port, addr=’0.0.0.0’, queue=4)→ Native
Object

Creates a passive stream listening for incoming connections on the given port
and address, and returns it. The address 0.0.0.0 allows connections to any
valid IP address of the device. queue is the maximum number of queued
unaccepted connections.
The passive stream can be passed to the following functions:

• net.accept (p. 136) waits for an incoming connection, and returns it.

• io.wait (p. 43) allows to simultaneously wait for an incoming con-
nection and data being available on established connections or streams.

140 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.3. Module net: TCP/IP Networking

If io.wait returns a passive stream, io.avail (p. 37) on this stream
will return 1 afterwards.

• io.close (p. 37) closes the passive stream and stops listening on the
given port, freeing it for other processes.

The following example is a server waiting for connections on port 4242, re-
ceiving lines from the incoming connections and sending them back reversed.
You may want to compare this example to the corresponding Bluetooth im-
plementation in section 6.1 (p. 122). The main difference is that TCP/IP
supports multiple connections per port and thus requires io.wait to manage
them simultaneously.

m Mobile Shell Library Version 2.01 141

6. Communications c© 2007 infowing AG

use net, io, array
// create a passive stream listening on port 4242
p=net.listen(4242);
m=[p]; // the monitored streams
while true do // loop forever
// wait for a client
io.print(io.stdout, "Waiting...");
s=io.wait(m);
if s=p then // new connection, accept it
print "got new connection.";
append(m, net.accept(p))

else // data on existing connection
io.print(io.stdout, "reading...");
line=io.readln(s);
if line#null then
print "got", line;
io.writeln(s, reverse(line))

else // EOF, remove connection
print "lost connection.";
io.close(s);
array.remove(m, array.index(m, s))

end
end

end
→ Waiting...got new connection.

Waiting...got new connection.
Waiting...reading...got Lucky Luke
Waiting...reading...got Jolly Jumper
Waiting...reading...lost connection.
Waiting...

Sample client calls producing the above output are:

s1=net.conn(’127.0.0.1’, 4242);
s2=net.conn(’127.0.0.1’, 4242);
io.write(s1, ’Lucky Luke\n’);
io.readln(s1)
→ ekuL ykcuL
io.write(s2, ’Jolly Jumper\n’);
io.readln(s2)
→ repmuJ ylloJ
io.close(s1)

142 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.3. Module net: TCP/IP Networking

net.name

• function name(address)→ Array

Permissions: CostComm

• function name()→ Array

Permissions: CostComm

Finds the host names belonging to an IP address. The IP address must be a
string in standard dot notation. The names are returned as an array of strings.
Without arguments, returns the local (own) host name.

print net.name(’62.65.129.6’)
→ [mail.infowing.ch]
print net.name()
→ [localhost]

net.shut

• function shut(stream, abort=false)→ null

Permissions: CostComm

Shuts the connection defined by stream down. If abort=false, shutdown
is gracefully, i.e. all pending data is transmitted. If abort=true, sending and
receiving is stopped immediately.
io.close (p. 37) also shuts down a connection, but net.shut gives finer
control over connection termination, and allows to catch errors.

s=net.conn(’mail.infowing.ch’, 25);
// abort the connection
net.shut(s, true)

net.start

• function start()→ null

Permissions: CostComm

• function start()→ prompt

null Permissions: CostComm

m Mobile Shell Library Version 2.01 143

6. Communications c© 2007 infowing AG

Starts the IAP connection.
Without argument, connects using the current IAP settings. This is normally
not required, as connections are created on demand.
With argument, connects using the current IAP settings, but overrides the
prompt flag: if prompt=false, the user is not prompted to choose an IAP;
if prompt=true, the user is always prompted.

// start the connection without prompting for an IAP
net.start(false)

net.stop

• function stop()→ null

Permissions: CostComm

Capabilities: all

Stops the current IAP connection. Calling this function is normally not re-
quired, as connections are removed when they are no longer needed.

// change the IAP, then stop the connection
net.iap([false, 7]);
net.stop()
// obtaining the local IP address should restart
// the connection with the new IAP
net.adr()

net.timeout

• function timeout()→ Number

Permissions: CostComm

• function timeout(ms)→ Number

Permissions: CostComm

Gets or sets the timeout used when looking up names and when connecting.
Without arguments, returns the current timeout in milliseconds. With one
argument, returns the old timeout, and sets the new timeout to ms. Setting the
timeout to zero (the default) or a negative value disables timeouts, i.e. TCP/IP

144 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 6.3. Module net: TCP/IP Networking

operations can block indefinitely, or use a timeout defined by the underlying
system.
Throws ExcValueOutOfRange if ms exceeds 2147483 (35 minutes and
47.483 seconds).
The timeout is used in all following name resolution, connect and shutdown
calls: whenever an operation does not complete within the given number of
milliseconds, it throws ErrTimedOut.

// give the phone 10 seconds to connect
net.timeout(10000);
try
s=net.conn("mail.infowing.ch", 25)
// connection successful...

catch e by
if index(e, "ErrTimedOut") # 0 then throw e end;
print "Could not connect within 10 seconds"

end

m Mobile Shell Library Version 2.01 145

6. Communications c© 2007 infowing AG

146 m Mobile Shell Library Version 2.01

c© 2007 infowing AG

7. Messaging

7.1 Module mms: Multimedia Messages

Compatibility of module mms
Sony Ericsson phones: all functions
except mms.senda

ErrNotSupported

aThe MMS API on SE devices only supports sending. Use module msg to read MMS.

This module supports sending and receiving of multi media messages
(MMS). In the context of this module, an MMS is simply a set of files being
sent from and to mobile devices, very similar to an e-mail with attachments.
MMS are identified by numbers. These numbers are used to retrieve and
update message contents, and to delete messages.
When a function of the module is called for the first time, it starts listening
for incoming messages and enqueues their numbers. Calling mms.receive

will return these numbers. Messages received earlier can be retrieved from
the inbox.
The typical sequence to consume messages starting with a certain token in
the subject (//tok in our example) is:

nr=mms.receive(); // wait for a new message
msg=mms.get(nr); // get the message
words=split(msg["subject"]); // split into words
if len(words)>0 and words[0] = "//tok" then
// first word is //tok, process message files
for f in msg["files"] do
...

end;
// delete it from the inbox
mms.delete(nr)

end

m Mobile Shell Library Version 2.01 147

7. Messaging c© 2007 infowing AG

The functions in this module correspond to those in module sms (p. 161) for
short messages.

mms.delete

• function delete(msgnum)→ null

Permissions: FreeComm+WriteApp

Delete the message with number msgnum from the inbox.
Throws ErrNotFound if the message with this number does not exist.

// delete all MMS inbox messages older than a week
lastweek=time.get()-7*24*3600;
for id in mms.inbox() do
if mms.get(id)["time"]<lastweek then
mms.delete(id)

end
end

mms.get

• function get(msgnum)→ Array

Permissions: FreeComm+ReadApp

Compatibility of function mms.get

Symbian 3rd Edition phones: the file names returned by this call are not
directly accessible, use mms.open (p. 149) to read their data.

Get the contents of the message with number msgnum. The message contents
are returned as an array with the following keys:

148 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 7.1. Module mms: Multimedia Messages

Key Contents
sender The phone number (or other address) of the sender

of the message.
subject The subject of the message.
time The time stamp of the message, as seconds since

the start of year 0. See also module time (p. 48).
unread true if the message is still unread, false if it has

been seen.
files The list of files comprising the message.

Throws ErrNotFound if the message with number msgnum does not exist.

// play all MIDI files found in the MMS inbox
for id in mms.inbox() do
for f in mms.get(id)["files"] do
if len(f)>3 and substr(f,len(f)-4)=".mid" then
audio.play(f); audio.wait()

end
end

end

mms.inbox

• function inbox()→ Array

Permissions: FreeComm+ReadApp

Gets the ids of all MMS messages in the inbox.

print mms.inbox()
→ [1045642,1045678,1047382]

mms.open

• function open(msgnum, index)→ Native Object

Permissions: FreeComm+ReadApp

Opens the attachment with index index, and returns a stream object to read
its data from. index is the index into msg.get(msgnum)[’files’].
The returned stream can be accessed with most functions from module io

m Mobile Shell Library Version 2.01 149

7. Messaging c© 2007 infowing AG

(p. 35):

• io.read, io.readln, and io.readm read data,

• io.size gets the total number of bytes,

• io.avail gets the number of bytes remaining,

• io.seek changes the read position,

• io.close closes the stream,

• io.ces gets and sets the character encoding scheme.

// Copy all attachments of an MMS to a directory
function copyAttmts(msgnum, dir)
m=mms.get(msgnum);
for j=0 to len(m[’files’])-1 do
name=m[’files’][j];
name=substr(name, rindex(name, ’\\’)+1);
i=mms.open(msgnum, j);
print "Copying ",io.size(i),"bytes to",name;
o=io.create(dir+’\\’+name);
b=io.read(i, 256);
while b#null do
io.write(o, b); b=io.read(i, 256)

end;
io.close(i); io.close(o)

end
end

mms.receive

• function receive(timeout=-1)→ Number|null

Permissions: FreeComm+ReadApp

Receives a new message and returns its id. If there is no message, waits until
one arrives. If timeout>=0 and timeout milliseconds have passed without
receiving anything, returns null.
Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

150 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 7.1. Module mms: Multimedia Messages

// quickly check whether there is a new MMS
id=mms.receive(0);
if id#null then
msg=mms.get(id);
// process msg

end

mms.send

• function send(recipient, subject, files, sender=null)→
null

Permissions: CostComm+Read(files)

• function send(recipients, subject, files,
sender=null)→ null

Permissions: CostComm+Read(files)

Compatibility of function mms.send

Sony Ericsson phones: character sets
of attached files and the sender cannot
be set.

ErrNotSupported

Sends a multimedia message to one or several recipients. A sin-
gle recipient is specified as a single phone number string, multiple
recipients are specified as an array of phone number strings.
The message will get the subject subject. The files to be attached are de-
fined by files, an array with one element for each file to be sent. Each
element is:

• Either a string, directly denoting the file name, with automatically de-
rived MIME type and default character set,

• or an array of one to three elements, in the form
[name,mimeType,charset]. name is a string denoting the file
name, mimeType (if not missing or null) is the MIME type of the file,
and charset (if not missing or null) is the character set/encoding
specified as an integer IANA MIB enum value.

A few important character sets/encodings:

m Mobile Shell Library Version 2.01 151

http://www.iana.org

7. Messaging c© 2007 infowing AG

MIB enum Description
3 US-ASCII
4 ISO-8859-1 (Latin 1)
5 ISO-8859-2 (Latin 2)
106 UTF-8
1000 ISO-10646-UCS-2 (“Unicode”)
1001 ISO-10646-UCS-4

If sender is not null, the From: field of the outgoing message is set to
sender. Note that most MMSCs will set this field to the MSISDN of the
sending device when receiving the MMS, so specifying a sender has no effect
unless you operate your own MMSC.
This function throws ErrNotFound if any of the files to be attached does not
exist.
This function returns as soon as the message has been placed in the outbox.
Actual sending may occur at a later time (“store and forward” principle).

// find all m scripts
f=files.scan(system.docdir + "*.m");
// prepend the directory
for i=0 to len(f)-1 do
f[i]=system.docdir+f[i]

end;
// send all those files to two people
mms.send(["+41797654321", "+393401234567"],

"My mShell scripts", f);
// send all those files again, specifying a MIME type
// and Latin 1 character set
for i=0 to len(f)-1 do
f[i]=[f[i],’text/plain’,4]

end;
mms.send(["+41797654321", "+393401234567"],

"My mShell scripts", f);

mms.set

• function set(msgnum, message)→ null

Permissions: FreeComm+WriteApp

152 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 7.2. Module msg: Generic Message Access

Updates the short message with number msgnum with the fields from
message. The keys listed in mms.get (p. 148) must be used. The sender
and subject of the message will only be changed in the MMS inbox summary;
they cannot be changed in the actual message. files cannot be changed at
all.

// mark all MMS in the inbox as unread
for id in mms.inbox() do
mms.set(id, ["unread":true])

end

7.2 Module msg: Generic Message Access

This module provides generic access to the messages (e.g. SMS, MMS,
OBEX) stored on the phone.
The phone organizes messages into a hierachical tree of entries, much like an
ordinary file system. The most important entry types are folders, messages
and attachments. A typical message hierarchy could look as follows:

Inbox Draft Outbox Sent

Attachment

MMS OBEXSMS

Local

Good morn... Hot pic

image.jpg
Attachment
mShell.sis

mShell.sis

type = msg.folder

type = msg.msg

type = msg.attmt

Each entry is identified by its unique id1. There are module constants for the
ids of the four main folders: msg.inbox, msg.draft, msg.outbox, and
msg.sent.
Note that the organization of folders is device dependent. For instance, Sony
Ericsson phones devices have dedicated service entries for MMS. Scan from
msg.root to obtain the complete hierarchy.

1These ids are the same as the ones used in module mms and module sms

m Mobile Shell Library Version 2.01 153

7. Messaging c© 2007 infowing AG

msg.delete

• function delete(entryOrId)→ null

Permissions: FreeComm+ReadApp+WriteApp

Delete the message entry identified by entryOrId. entryOrId can be a
complete entry, as returned by msg.scan, or simply an integer id.
Throws ErrNotFound if this entry does not exist.

for m in msg.scan(msg.sent, msg.msg) do
msg.delete(m)

end

msg.move

• function move(entryOrId,newParentEntryOrId)→ null

Permissions: FreeComm+ReadApp+WriteApp

Move the message entry identified by entryOrId from its current parent
to the entry identified by newParentEntryOrId. The latter is typically a
folder. Both parameters can be a complete entry, as returned by msg.scan,
or simply an integer id.
Throws ErrNotFound if this entry does not exist.

// move all .SIS file messages from the inbox to draft
for m in msg.scan(msg.inbox, msg.msg, "*.sis") do
msg.move(m, msg.draft)

end

msg.open

• function open(entryOrId)→ Native Object|null

Permissions: FreeComm+ReadApp

Opens a message or attachment entry, and returns a stream object to read its
data from. For attachment entries, the data is the file data from the attachment.
For other entries, it is the message body.
Returns null if the entry has no data to read.

154 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 7.2. Module msg: Generic Message Access

The returned stream can be accessed with most functions from module io

(p. 35):

• io.read, io.readln, and io.readm read data,

• io.size gets the total number of bytes,

• io.avail gets the number of bytes remaining,

• io.seek changes the read position,

• io.close closes the stream,

• io.ces gets and sets the character encoding scheme. For messages,
the default is io.utf16le and for attachments io.raw.

// Copy an attachment from the inbox to a file.
function copyAttmt(name,file)
ms=msg.scan(msg.inbox, null, name);
// if there is no message, throw an exception
if len(ms)=0 then
throw "No message "+name

end;
// get the first attachment of the message
ms=msg.scan(ms[0], msg.attmt);
// if there is no attachment, throw an exception
if len(ms)=0 then
throw "No attachment for "+name

end;
i=msg.open(ms[0]);
print "Copying ",io.size(i),"bytes";
o=io.create(file);
b=io.read(i, 256);
while b#null do
io.write(o, b); b=io.read(i, 256)

end;
io.close(i); io.close(o)

end

m Mobile Shell Library Version 2.01 155

7. Messaging c© 2007 infowing AG

msg.scan

• function scan(parent=msg.inbox,type=null,pattern="*")→
Array

Permissions: FreeComm+ReadApp

Scan the message entry identified by parent for its direct children. parent
can be a complete entry, as returned by this function, or simply an integer id.
type restricts the entry type to the given type (e.g. msg.msg). If type=null,
entries of all types are returned. pattern is a pattern which the two entry
descriptions must match. It is not case sensitive and can contain the wildcards
* and ?.
Returns an array with one element for each member found, each element
being an array with the following keys:

Key Meaning Type
id Entry id Integer
descr Entry description (E.g. start of message text) String
descr2 Other description (E.g. message sender) String
time The time stamp of the message, as seconds since

the start of year 0. See also module time (p. 48).
Number

unread true if the message is still unread, false if it has
been seen.

Boolean

type Entry type Integer

// count the messages in the inbox
print len(msg.scan()),"messages"
→ 13 messages
// get the sent messages containing "morning"
for m in msg.scan(msg.sent, msg.msg, "*morning*") do
print m

end
→ [1048747,Good morning!,0779696969,63348191631,false,

268439402]
[1048748,This morning I can’t see you,0797654321,
63348191796,false,268439402]

156 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 7.3. Module obex: Object Exchange Client

msg Constants

• const attmt = The type indicating an attachment entry.
• const draft = The id of the folder with draft messages.
• const folder = The type indicating a folder entry.
• const inbox = The id of the folder with incoming messages.
• const local = The id of the service with local folders.
• const msg = The type indicating a message entry.
• const outbox = The id of the folder with outgoing messages.
• const root = The id of the root of the message entry hierarchy.
• const sent = The id of the folder with sent messages.

7.3 Module obex: Object Exchange Client

This module supports sending and receiving of files via OBEX (Object Ex-
change) over a Bluetooth R©link. The module provides the client side; most
Bluetooth equipped devices have an OBEX server which can accept files (put
operation of the client); some servers can also deliver files (get operation of
the client).
See also module bt (p. 119).
Usage of this module typically follows this pattern:

m Mobile Shell Library Version 2.01 157

http://www.bluetooth.org

7. Messaging c© 2007 infowing AG

function btsend(files)
// have the user choose a device
dev=bt.select();
if dev#null then
adr=dev[’adr’];
// connect after getting the channel for the
// OBEX Push Service
obex.conn(adr, bt.chan(adr, obex.uuid)[0]);
// send all the files
for f in files do
obex.put(f)

end;
obex.close()

end
end

// send three files
btsend([’sample.dat’, ’moon.gif’, ’bells.mp3’])

obex.close

• function close()→ null

Permissions: FreeComm

Closes the connection to the server. Does nothing if there is no connection.

obex.conn

• function conn(adr, channel, password=null)→ String

Permissions: FreeComm

Connects to the OBEX server on the host with Bluetooth address adr, on
channel channel. If password#null, it will be used during OBEX authen-
tication.
The channel is normally obtained by querying the hosts service discovery
database via bt.chan (p. 124) for obex.uuid (p. 161).
If successful, returns the “who” name of the OBEX server.

158 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 7.3. Module obex: Object Exchange Client

dev="00:0E:07:C9:EE:88";
channel=bt.chan(dev, obex.uuid)[0];
print obex.conn(dev, channel)
→ peer2

obex.get

• function get(path, name=null)→ String

Permissions: Write(path)+FreeComm

Gets (pulls) a file from the server, storing it in path. The object (or file) to
be pulled is given by name. If name=null, it equals to path without any
directory components.
Note that not all servers support file pulling.
Throws ErrDisconnected if the client is not connected.

// get a vCard into the cards directory
obex.get(’\\cards\\William.vcf’, ’OwnCard.vcf’)

obex.path

• function path(name, create=false)→ null

Permissions: FreeComm

Changes the directory on the server to name. If name="..", changes to the
parent directory. If create=true, the directory is also created if it doesn’t
exist.
Note that not all servers support directories.
Throws ErrDisconnected if the client is not connected.

// change to directory ’images’, creating it if required
path(’images’, true);
// change back to the parent
path(’..’)

m Mobile Shell Library Version 2.01 159

7. Messaging c© 2007 infowing AG

obex.put

• function put(path, name=null, type=null,
description=null)→ null

Permissions: Read(path)+FreeComm

Puts (pushes) a file to the server, getting the data from file. The name of the
file on the server is given by name, its MIME type by type. description
is an optional description of the data for the server.
If name=null, it equals to file without any directory components.
If type=null, it is derived from the file extension for many important file
types.
Throws ErrDisconnected if the client is not connected.

// send a screen shot to the server
obex.put("c:\\Nokia\\Images\\Fe_img\\Fescr(0).jpg",

"myapp.jpg", "image/jpeg",
"Screen shot of my app")

obex.timeout

• function timeout()→ Number

Permissions: FreeComm

• function timeout(ms)→ Number

Permissions: FreeComm

Gets or sets the timeout used during most functions of this module. Without
arguments, returns the current timeout in milliseconds. With one argument,
returns the old timeout, and sets the new timeout to ms. Setting the timeout to
zero (the default) or a negative value disables timeouts, i.e. OBEX operations
can block indefinitely, or use a timeout defined by the underlying system.
The timeout is used in all following calls: whenever an operation does not
complete within the given number of milliseconds, it throws ErrTimedOut.
Throws ExcValueOutOfRange if ms exceeds 2147483 (35 minutes and
47.483 seconds).
A timed out call will always close the OBEX connection; obex.conn

(p. 158) must be called to reconnect.

160 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 7.4. Module sms: Short Messages

obex.who

• function who()→ String|null

Permissions: FreeComm

• function who(name)→ String|null

Permissions: FreeComm

Gets or sets the local “who” name for the next connection.
Without arguments, returns the current “who” name, or null if none is set.
With one argument, returns the old name and sets the new name to name.
Setting it to null disables sending the “who” name.
Some servers assume a special role if a certain name is presented. For most
purposes, you do not need to set a “who” name.
obex.who must be called before obex.conn (p. 158).

// set the "who" name to ’peer1’
obex.who(’peer1’)

obex Constants

• const uuid = 4357 The standard BT UUID for the Obex Push Service.

7.4 Module sms: Short Messages

This module supports sending and receiving of short messages.
Messages are identified by numbers. These numbers are used to retrieve and
update message contents, and to delete messages.
When a function of the module is called for the first time, it starts listening
for incoming messages and enqueues their numbers. Calling sms.receive

will return these numbers. Messages received earlier can be retrieved from
the inbox.
Messages longer than the maximum length (160 characters in the default al-
phabet) can also be sent and received. They are transmitted as “concatenated
SMS”, but the module handles this automatically.

m Mobile Shell Library Version 2.01 161

7. Messaging c© 2007 infowing AG

The typical sequence to consume messages starting with a certain token
(//tok in our example) is:

nr=sms.receive(); // wait for a new message
msg=sms.get(nr); // get the message
words=split(msg["text"]); // split the text into words
if len(words)>0 and words[0] = "//tok" then
// first word is //tok, delete it from inbox
sms.delete(nr);
// process message

end

sms.delete

• function delete(msgnum)→ null

Permissions: WriteApp+FreeComm

Delete the message with number msgnum from the inbox.
Throws ErrNotFound if the message with this number does not exist.

// delete all SMS inbox messages older than a week
lastweek=time.get()-7*24*3600;
for id in sms.inbox() do
if sms.get(id)["time"]<lastweek then
sms.delete(id)

end
end

sms.get

• function get(msgnum)→ Array

Permissions: ReadApp+FreeComm

Get the contents of the message with number msgnum. The message contents
are returned as an array with the following keys:

162 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 7.4. Module sms: Short Messages

Key Contents
sender The phone number of the sender of the message.
text The text of the message.
time The time stamp of the message, as seconds since

the start of year 0. See also module time (p. 48).
unread true if the message is still unread, false if it has

been seen.
Throws ErrNotFound if the message with number msgnum does not exist.

// print all messages in the SMS inbox
for id in sms.inbox() do
print sms.get(id)

end
→ [248,Delivery confirmation,63277873561,false]

...

sms.inbox

• function inbox()→ Array

Permissions: ReadApp+FreeComm

Gets the ids of all SMS messages in the inbox.

print sms.inbox()
→ [1049241,1049289,1049292]

sms.receive

• function receive(timeout=-1)→ Number|null

Permissions: ReadApp+FreeComm

Receives a new message and returns its id. If there is no message, waits until
one arrives. If timeout>=0 and timeout milliseconds have passed without
receiving anything, returns null.
Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

m Mobile Shell Library Version 2.01 163

7. Messaging c© 2007 infowing AG

// quickly check whether there is a new message
id=sms.receive(0);
if id#null then
msg=sms.get(id);
// process msg

end

sms.send

• function send(recipient, message, bits=7)→ null

• function send(recipients, message, bits=7)→ null

Permissions: CostComm

Sends a short message to one or several recipients. A single recipient is
specified as a single phone number string, multiple recipients are specified
as an array of phone number strings.
bits indicates the number of bits used to encode a character, thus limiting the
length of a simple message. Longer messages will be concatenated from sev-
eral simple messages, thus increasing transmission cost. The allowed values
are:
bits Meaning Max. length

7 Default text alphabet 160
8 Data alphabet 140

16 Unicode alphabet 70
This function does not return before the message has been sent (or an error
occurs).

// send a silly message to two people
sms.send(["+41797654321", "+393401234567"],

"Good morning!")

sms.set

• function set(msgnum, message)→ null

Permissions: WriteApp+FreeComm

Updates the short message with number msgnum with the fields from
message. The keys listed in sms.get (p. 162) must be used. The sender

164 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 7.4. Module sms: Short Messages

and text of the message will only be changed in the SMS inbox summary;
they cannot be changed in the actual message.

// mark all messages in the inbox as unread
for id in sms.inbox() do
sms.set(id, ["unread":true])

end

m Mobile Shell Library Version 2.01 165

7. Messaging c© 2007 infowing AG

166 m Mobile Shell Library Version 2.01

c© 2007 infowing AG

8. Multimedia

8.1 Module audio: Audio Functions

This module provides audio functions: generating synthetic beeps and DTMF
sequences, playing most audio file types (e.g. MP3), and recording and edit-
ing AU format, WAV format or AMR-NB format files.
To directly play an existing audio file, use audio.play (p. 172).
To play parts of a file or record to a file, use audio.open (p. 170), followed
by calls to audio.play (p. 172), audio.record (p. 173) and audio.stop
(p. 174).
Each file has a recorded length (its “duration”) and the “head position” the
player is at or will start at. Both are measured in milliseconds. audio.len
(p. 169) and audio.pos (p. 172) access them. audio.cut (p. 169) cuts a
part out of a recording.
Please note: while it is possible to record phone conversations on most de-
vices using this module, due to limitations in the underlying Symbian OS
APIs, sound cannot be sent to a phone uplink. The behaviour when playing
tones or sound during a phone call varies between devices; some will throw
ErrInUse, others will simply mute the sound.

audio.beep

• function beep(hz=880, ms=800)→ null

Plays a synthetic beep with frequency hz Hertz for a duration of ms millisec-
onds.
This function immediately returns, before playing completes. Exceptions can
therefore be thrown anywhere in the following code.
Throws ErrInUse if the sound unit is busy playing or recording another
sound. Throws ExcValueOutOfRange if the frequency is not positive.

m Mobile Shell Library Version 2.01 167

http://www.symbian.com

8. Multimedia c© 2007 infowing AG

audio.beep(440, 1000)

audio.busy

• function busy()→ Boolean

Returns true if the last playing function (audio.beep, audio.dtmf,
audio.play) is still producing sound, or if sound is still being recorded
(after audio.record). Returns false otherwise.
This function checks only the current m process: it will return false if the
sound unit is in use by another process (inside or outside of m).

audio.beep(440, 1000);
while audio.busy() do
io.print(io.stdout, ’.’); sleep(200)

end;
print "beep ended"
→beep ended

audio.close

• function close()→ null

Closes the currently accessed audio file.
Throws ErrInUse if the file is being played or recorded. Thus, to forcibly
close a file, use:

audio.stop();
audio.close()

168 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 8.1. Module audio: Audio Functions

audio.cut

• function cut(start, end=0)→ null

Compatibility of function audio.cut

Sony Ericsson UIQ2 phones cannot
truncate at the beginning, start=0 is
mandatory.

ErrNotSupported

Sony Ericsson UIQ3 phones cannot
truncate at all.

ErrNotSupported

Cuts the current audio file at the beginning and/or end. The initial start
milliseconds and the final end milliseconds will be removed.
Throws ErrInUse if the file is being played or recorded, ErrAccessDenied
if the file has not been opened for writing, and ErrArgument if any of the
cropped parts are outside the current file.

// truncate the current file by 10% on both ends
audio.cut(0.1*audio.len(), 0.1*audio.len())

audio.dtmf

• function dtmf(digits)→ null

Plays the string digits as DTMF (dual-tone multi-frequency) tones (“tone
dialling”). Valid characters for digits are 0 to 9, A to D, # and *. All other
characters are ignored.
Throws ErrInUse if the sound unit is busy playing or recording another
sound.

// play with ascending high frequency
audio.dtmf(’147*2580369#ABCD’)

audio.len

• function len()→ Number

Returns the length (“duration”) of the current file, in milliseconds.
Throws ErrNotReady if no file has been opened.

m Mobile Shell Library Version 2.01 169

8. Multimedia c© 2007 infowing AG

audio.open

• function open(file,flags=0,rate=8000)→ Number

Permissions: Read(file) / Read+Write(file)

Compatibility of function audio.open

Nokia phones and Sony Ericsson
UIQ2 phones do not support AMR-
NB format for recording.

ErrNotSupported

Sony Ericsson UIQ3 phones do not
support WAV and AU formats for
recording.

ErrNotSupported

Sony Ericsson UIQ3 phones cannot
handle file suffixes other than .amr

when recording.

ErrNotFound,
ErrNotSupported

Opens or creates a file for playing and/or recording, and returns the length of
the file (“duration”) in milliseconds.
Whether the file is opened or created is determined by flags:
• const rw = 1 Open an existing file for recording.
• const wav = 2 Create a file in Microsoft’s WAV format.
• const au = 3 Create a file in Sun’s AU format.
• const amr = 4 Create a file in AMR-NB format (Adaptive Multi-Rate,
Narrow Band).
When creating a file, you may combine audio.wav or audio.au with one
of the following flags selecting the codec:
• const alaw = 0 Use A-law compression (13-bit to 8-bit) codec.
• const mulaw = 16 Use µ-law compression (13-bit to 8-bit) codec.
• const pcm8 = 32 Use 8-bit direct pulse-code modulation codec.
• const pcm16 = 48 Use 16-bit direct pulse-code modulation codec.
• const ima = 64 Use IMA adaptive differential PCM codec.
audio.amr only supports its own codec.
To summarize: audio.open acts according to the following scheme:

• If flags=0 (the default), opens the file for playing. Attempts to record
to it or to truncate it will throw ErrAccessDenied.

170 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 8.1. Module audio: Audio Functions

• If flags contains audio.rw, opens the file for playing and recording.
Format, codec and sample rate will be taken from the existing file.

• If flags contains audio.wav or audio.au, creates a new file in WAV
or AU format, and the specified codec is chosen. rate indicates the
sample rate in Hz (samples per second). The sample rates supported
depend on codec and device.

For a newly created file in WAV or AU format, the default codec is
A-law.

Throws ErrInUse if a file is already being played or recorded.

// Create a new file with default codec and sample rate
file=’sample.wav’;
audio.open(file, audio.wav);
// record sound until the file exceeds 200 kB
audio.record();
while files.size(file)<=200000 do
sleep(1000)

end;
audio.stop();
print ’Recorded’,audio.len(),’ms in ’,
files.size(file),’bytes.’;

print files.size(file)/audio.len(),’ kB/s’
→ Recorded 25260 ms in 202124 bytes.
→ 8.0017418844 kB/s
// play the file
audio.play(); audio.wait()

// Do the same in full lossless CD quality
audio.open(file, audio.wav | audio.pcm16, 44100);
// record sound until the file exceeds 200 kB
audio.record();
while files.size(file)<=200000 do
sleep(1000)

end;
audio.stop();
print ’Recorded’,audio.len(),’ms in ’,
files.size(file),’bytes.’;

→ Recorded 2900.158 ms in 255838 bytes.
→ 88.215193793 kB/s

m Mobile Shell Library Version 2.01 171

8. Multimedia c© 2007 infowing AG

audio.play

• function play()→ null

• function play(file)→ null

Permissions: Read(file)

Without argument, starts or continues playing the currently open sound file.
With one argument, directly starts playing a sound file (.mp3, .wav, .au or
such). The file name is relative to the current directory (see 1.2 (p. 4)). When
the sound file has finished playing, it is closed.
This function immediately returns, before playing completes. Exceptions
can therefore be thrown anywhere in the following code. Use audio.wait

(p. 174) to wait for completion.
Throws ErrInUse if the sound unit is busy playing or recording another
sound.
Without argument, throws ErrNotReady if no file has been opened, and
throws ErrArgument if the current playing position is outside the file.

audio.play("c:\\documents\\audio\\Hello.mp3")

audio.pos

• function pos()→ Number

• function pos(ms)→ Number

Without arguments, returns the playing position in the current file, in mil-
liseconds form the start.
With one argument, set the playing position to ms milliseconds.
Throws ErrNotReady if no file has been opened.
With one argument, throws ErrInUse if the file is being played or recorded.

172 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 8.1. Module audio: Audio Functions

// Open a file and play seconds 5 to 12
audio.open(’sample.wav’);
audio.pos(5000);
audio.play();
sleep(7000);
print audio.pos();
audio.stop()
→ 11850

audio.record

• function record(gain=100)→ null

Compatibility of function audio.record

Sony Ericsson phones cannot record
phone conversations

ErrInUse

Sony Ericsson phones do not reliably
detect unsupported sample rates, re-
sulting in mismatches between sam-
pled and played rates.
Sony Ericsson UIQ3 phones do not
support any seeking when recording.
Calls to audio.pos are meaningless
when recording.

Record sound from the microphone or from an ongoing phone conversation
(mixing microphone and incoming phone signal). gain is the recording gain,
a number between 0 (minimum or automatic) and 100 (maximum). Default
gain is 100. Setting the gain to a negative value sets it to 0, setting it to a value
greater than 100 sets it to 100.
The audio data is appended to the current file. Use audio.cut (p. 169) to
truncate the file and set the recording position.
This function immediately returns, before recording completes. Exceptions
can therefore be thrown anywhere in the following code. Use audio.stop

(p. 174) to stop recording.
Throws ErrInUse if a file is already being played or recorded. Throws
ErrNotSupported if the file format does not support recording, or if the

m Mobile Shell Library Version 2.01 173

8. Multimedia c© 2007 infowing AG

sample rate is not supported.
To add 20 seconds of recorded sound at the end of an existing audio file
sample.wav:

audio.open(’sample.wav’, audio.rw);
audio.record();
sleep(20000);
audio.stop()

audio.stop

• function stop()→ null

Stops the currently playing sound, or the current recording.

audio.volume

• function volume()→ Number

• function volume(percent)→ Number

Returns the current sound output volume and optionally changes it. The vol-
ume is a number between 0 (mute) and 100 (loudest). Default volume is 50.
Setting the volume to a negative value sets it to 0, setting it to a value greater
than 100 sets it to 100.
On most devices, changing the volume while a sound is playing has immedi-
ate effect.

audio.play("c:\\documents\\audio\\HomeBox.mp3");
while audio.busy() do
sleep(100);
audio.volume(audio.volume()-10) // fade out

end

audio.wait

• function wait()→ null

Waits until playing completes. Returns immediately if no sound is playing.

174 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 8.2. Module cam: Onboard Camera

This function checks only the current m process: it will return immediately if
the sound unit is in use by another process (inside or outside of m).

for i=1 to 10 do
audio.wait(); audio.beep(440, 500);
audio.wait(); audio.beep(330, 500)

end

8.2 Module cam: Onboard Camera

This module provides access to the onboard camera for still images. Pictures
taken can be processed or saved by module module graph (p. 55).
Since the camera is a shared resource and consumes battery power, it must
be turned on before use by cam.on (p. 178) and turned off afterwards by
cam.off (p. 178). A typical example using the camera might look as follows:

// show the available image sizes
for s in cam.sizes() do
print s

end
→ [1280,960]

[640,480]
[160,120]

// turn the camera on for 640x480 size images
cam.on(1)
// produce a dark, contrast rich picture
cam.bright(-20); cam.contrast(30)
→ 0

0
// display a view finder close to the top left corner
cam.view(10,10)
// take an image
icon=cam.take()
// turn the camera off
cam.off()
// save the image via the graph module
s=graph.size(icon); // get the image size
graph.size(s[0], s[1]); // make graph big enough
graph.put(0,0,icon); // draw the image
graph.save("keyboard.jpg") // save it

m Mobile Shell Library Version 2.01 175

8. Multimedia c© 2007 infowing AG

Sample m screen

cam.bright

• function bright()→ Number

• function bright(b)→ Number

Gets or sets the brightness of the image taken. The brightness is a number
between -100 (very dark) and 100 (very bright). Standard brightness is 0.
Without arguments, returns the currently used brightness. With one argument,
returns the old brightness, and sets the new brightness to b.
Throws ErrInUse or ErrNotReady if the camera has not been turned on.

// show the view finder, increasing brightness
cam.on()
cam.view()
for b=-100 to 100 by 10 do
cam.bright(b); sleep(1000)

end;
cam.off()

cam.contrast

• function contrast()→ Number

• function contrast(c)→ Number

Gets or sets the contrast of the image taken. The contrast is a number between

176 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 8.2. Module cam: Onboard Camera

-100 (minimum contrast) and 100 (maximum contrast). Standard contrast is
0.
Without arguments, returns the currently used contrast. With one argument,
returns the old contrast, and sets the new contrast to c.
Throws ErrInUse or ErrNotReady if the camera has not been turned on.

// show the view finder, increasing contrast
cam.on()
cam.view()
for c=-100 to 100 by 10 do
cam.contrast(c); sleep(1000)

end;
cam.off()

cam.index

• function index()→ Number

• function index(camIndex)→ Number

On devices with more than one built-in camera, selects the camera to oper-
ate on. The camera index must be greater than or equal to 0 and less than
cam.count (p. 181).
Without arguments, returns the index of the currently used camera. With one
argument, turns the old camera off, returns the old index, and sets the new
camera index.
By default, the first camera (index 0) is selected.
Throws ExcIndexOutOfRange if the camera does not exist.

// select the 2nd camera, if there is one
if cam.count> 1 then
cam.index(1)

else
print "No second camera"

end

m Mobile Shell Library Version 2.01 177

8. Multimedia c© 2007 infowing AG

cam.off

• function off()→ null

Removes the view finder if it is shown, and turns the camera off. Does nothing
if the camera is already off.

cam.on

• function on(sizeIndex=0)→ null

Turns the camera on and prepares it for taking images of the size
cam.sizes()[sizeIndex].
Throws ExcIndexOutOfRange if sizeIndex is less than 0 or greater than
the cam.sizes() - 1.
Throws ErrInUse if the camera is already on, or used by another application.

cam.sizes

• function sizes()→ Array

Returns the available image sizes, as an array of arrays containing image
width and image height. The actual sizes returned are hardware dependent.
The camera does not have to be on to obtain the image sizes.

for s in cam.sizes() do
print s

end
→ [640,480]

[320,240]
[160,120]

cam.take

• function take()→ Native Object

• function take(jpegpath,quality=75)→ null

Permissions: Write(jpegpath)

178 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 8.2. Module cam: Onboard Camera

Compatibility of function cam.take

Sony Ericsson UIQ2 phones if
cam.view has not been called.

ErrInUse

Without arguments, takes an image of the configured size, brightness and
contrast and returns it as an icon (see graph.icon (p. 66)). The icon can be
saved, scaled, or analyzed using functions in module graph (p. 55).
With one or two arguments, takes an image of the configured size, brightness
and contrast and saves it directly to file jpegpath, compressing for the given
quality. quality must be between 1 and 100. No icon is produced in this
case.
Throws ErrInUse or ErrNotReady if the camera has not been turned on.
Throws ExcValueOutOfRange if the JPEG quality is out of range.

i=cam.take();
print i
→ icon@4186d8
// scale the image to one quarter and display it
graph.size(i,0.5)
→ [640,480]
graph.put(0,0,i)
graph.show()

Sample m screen

m Mobile Shell Library Version 2.01 179

8. Multimedia c© 2007 infowing AG

// take an image and save it to snapshot.jpg
cam.take(’snapshot.jpg’)

cam.view

• function view(x=0,y=0,w=160,h=120)→ Array

Compatibility of function cam.view

Sony Ericsson UIQ3 phones blacken the entire window when showing
the view finder.

Shows a view finder (the image currently seen by the camera) on the screen
at coordinates (x,y), in a rectangle of roughly width w and height h. (0,0)
is at the upper left corner of the m application view.
Returns the actual size of the rectangle used.
Throws ErrInUse or ErrNotReady if the camera has not been turned on.
Throws ErrNotSupported if the requested view finder size is not supported.

// show the view centered on the graph view
gs=graph.size();
cam.on();
vs=cam.view();
x=math.trunc((gs[0]-vs[0])/2);
y=math.trunc((gs[1]-vs[1])/2);
// draw a frame around the view
graph.rect(x-2,y-2,vs[0]+4,vs[1]+4);
graph.show();
cam.view(x, y)

180 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 8.2. Module cam: Onboard Camera

Sample m screen

cam Constants

• const count = The number of cameras available.

m Mobile Shell Library Version 2.01 181

8. Multimedia c© 2007 infowing AG

182 m Mobile Shell Library Version 2.01

c© 2007 infowing AG

9. Telephony

9.1 Module gsm: GSM information

This module provides access to GSM (Global System for Mobile communica-
tion) related information. This includes identifiers and network information.
Please note that not all functions of this module are supported on all devices.
Some functions may throw ErrNotSupported.

gsm.cid

• function cid()→ Number

Permissions: ReadApp

Capabilities: extended

Gets the current CID (Cell Identity). Roughly speaking, a cell identifies the
location of the phone: in a simplified view, each GSM cell corresponds to
an antenna the phone is communicating with1. In cities, cells identify the
location of the phone with a precision of a few hundred meters or even less.
In remote locations, in particular on mountains, the distance to the antenna
can be ten or more kilometers.
In practice, a specific location (e.g. an office) is typically covered by more
than one cell, so the CID may change even if the phone doesn’t move.
According to GSM specs, the CID is a number between 0 and 65535.

print gsm.cid()
→ 17437

1Usually, a single BTS (base transceiver station) covers multiple cells via sectorial antennas
mounted on a single antenna tower.

m Mobile Shell Library Version 2.01 183

9. Telephony c© 2007 infowing AG

gsm.net

• function net()→ Array

Permissions: ReadApp

Capabilities: extended

Gets the current network as an array with the following keys:
Key Contents
mcc Mobile Country Code (MCC)
mnc Mobile Network Code (MNC)
short Short Network Name
long Long Network Name
lac Location Area Code (LAC)

To identify the current provider, MCC and MNC should be used. MCC and
MNC of the home network are identical to the first three and two digits of the
IMSI (see gsm.imsi (p. 185)).
Short and long name come from a database stored in the phone, so they may
differ between phones for the same network.

n=gsm.net();
print n
→ 228,1,Swisscom,Swisscom,1616]
print 100*n["mcc"]+n["mnc"]
→ 22801
print substr(gsm.imsi,0,5)
→ 22801

gsm.new

• function new(timeout=-1)→ Boolean

Permissions: ReadApp

Capabilities: extended

Waits until the current location information (typically the cell) changes, or
until timeout milliseconds passed, if timeout>=0.
Returns true if the location information changed, or false if the timeout
expired.

184 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 9.1. Module gsm: GSM information

Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).
The following code fragment waits ten seconds for a change in the location
information, and prints the new cell if it changed.

if gsm.new(10000) then
print "In cell",gsm.cid()

end

gsm.signal

• function signal()→ Number

Permissions: ReadApp

Compatibility of function gsm.signal

Sony Ericsson UIQ3 phones do not
support this API.

Call returns 0.

Gets the strength of the signal in the current network. The meaning of the
returned value is device dependent. It may be a number between 0 (no signal)
and 100 (strongest), or it may correspond to the number of signal strength
bars normally shown on the display.

print gsm.signal()
→ 89

gsm Constants

• const imei = phone identifier

This constant contains the IMEI (International Mobile Equipment Identity)
for the device m is running on. The IMEI is a fifteen digit unique identifier
assigned to each device (cellphone). This number can also be queried directly
by dialing *#06# on the phone.

print gsm.imei
→ 355023001234567

• const imsi = subscriber identifier

m Mobile Shell Library Version 2.01 185

9. Telephony c© 2007 infowing AG

Capabilities: extended

Compatibility of constant imsi
Nokia 6600: the IMSI cannot be ob-
tained.

imsi=000000000000000

This constant contains the the IMSI (International Mobile Subscriber Iden-
tity) for the SIM card of the device m is running on. The IMSI is an up to
fifteen digit unique identifier assigned to each subscriber (SIM card).

print gsm.imsi
→ 228011234567890

• const number = own phone number

Contains the own phone number, usually with country prefix.

print gsm.number
→ +41791234567

9.2 Module phone: Phone Calls

This module allows to monitor and make voice phone calls. The module can
monitor at most one call at the same time. The following diagram depicts the
relationship between states and functions:

state(idle)

hangup()

dial()new()
hangup()

Idle Active

user answers:
Ringing state(active)

answer()

user dials:
new()

186 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 9.2. Module phone: Phone Calls

• If phone.new (p. 188) detects an incoming call, this new call
is phone.ringing (p. 190). It can either be answered via
phone.answer (p. 187) or by the user, or rejected via phone.hangup
(p. 188) or by the user. Once the call has been answered, it becomes
phone.active (p. 190).

• If phone.new detects an outgoing call dialled by the user, or
phone.dial (p. 187) successfully establishes one, the call also be-
comes phone.active.

• An active call can be terminated explicitly via phone.hangup. Alter-
natively, phone.state (p. 189) can wait for it becoming phone.idle
(p. 190), i.e. for its termination.

phone.answer

• function answer()→ null

Permissions: FreeComm

Answers an incoming (ringing) call by accepting it. This should be called
after phone.new (p. 188) returns with an incoming call. See there for an
example.
Throws ErrDisconnected if the there is no current call.

phone.dial

• function dial(number, timeout=-1)→ Boolean

Permissions: FreeComm+CostComm

Dials the given phone number to establish a voice call. If timeout>=0,
waits at least timeout milliseconds before giving up. Returns true if the
call could be established and the remote party has answered, or false if the
timeout was reached.
Throws ErrInUse if a call is already active.
Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

m Mobile Shell Library Version 2.01 187

9. Telephony c© 2007 infowing AG

// make a one minute call to +41797654321
if phone.dial("+41797654321", 30000) then
sleep(60000);
phone.hangup()

end

phone.hangup

• function hangup()→ null

Permissions: FreeComm

Compatibility of function phone.hangup

Symbian 3rd Edition phones: a call which is phone.ringing cannot be
hung up without answering it first. Calling phone.hangup on a ringing
call will answer it first and then immediately hang up, potentially causing
costs for the caller.

Disconnects the current call (“hangs up” the phone).
Throws ErrDisconnected if there is no current call.
Does not hang up a call which was not made via phone.dial (p. 187) or
obtained via phone.new (p. 188).

phone.ms

• function ms()→ Number

Permissions: FreeComm

Gets the duration of the current call in milliseconds.
Throws ErrDisconnected if there is no current call.
See phone.state (p. 189) for an example.

phone.new

• function new(timeout=-1)→ Array|null

Permissions: FreeComm

188 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 9.2. Module phone: Phone Calls

Waits for a new call (incoming or outgoing), and returns an array with the
following fields:

Key Meaning Type
incoming true for incoming, false for outgoing Boolean
number Phone number of remote party String

If timeout>=0, waits at least timeout milliseconds before giving up. Re-
turns null if the timeout was reached.
Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).

// reject all incoming calls from +41797654321
while true do
c=phone.new();
if c["incoming"] then
if c["number"]="+41797654321" then
// we reject this call
phone.hangup()

else
// other calls are accepted
phone.answer()

end
end

end

phone.state

• function state(mask=phone.idle | phone.ringing |
phone.active, timeout=-1)→ Number|null

Permissions: FreeComm

Waits until the current call enters one of the states in mask, and returns the
current state. If timeout>=0, waits at least timeout milliseconds before
giving up and returning null.
Throws ExcValueOutOfRange if timeout exceeds 2147483 (35 minutes
and 47.483 seconds).
Throws ErrDisconnected if there is no current call.

m Mobile Shell Library Version 2.01 189

9. Telephony c© 2007 infowing AG

// log number and duration of each outgoing call
while true do
c=phone.new();
if not c["incoming"] then
// wait until the call becomes idle again
phone.state(phone.idle);
print phone.ms(),"ms call to",c["number"]

end
end

phone Constants

• const idle = 1 The call is idle, i.e. was hung up.
• const ringing = 2 A call is coming in and must be answered.
• const active = 4 A call is active.

190 m Mobile Shell Library Version 2.01

c© 2007 infowing AG

10. Applications and
Processes

10.1 Module app: Application Control

This module provides access to the applications installed on the phone: listing
installed applications, opening documents, starting and stopping applications,
and bringing them to the foreground or sending them to the background.
Functions in this module are specific to Symbian OS, and not likely to be
portable to other operating systems.
In Symbian OS, each application has its unique UID (unique identifier),
which is simply an integer number. In the functions of this module, an ap-
plication is identified by its UID or its name (caption). Since the caption is
language and installation dependent, the UID is generally preferrable. Appli-
cation UIDs and captions may also vary between different devices.
Since m itself is also an application, the functions in this module can also be
used to bring m to the foreground, send it to background, or simply stop it.
The app.uid (p. 196) constant identifies the m application.

app.find

• function find(name=null)→ Array

Permissions: ReadApp

Searches for applications whose name matches the pattern name. name is not
case sensitive and can contain the wildcards * and ?. If name=null, searches
for all installed applications.
Returns an array with one element for each application found, each element
being an array with the following keys:

m Mobile Shell Library Version 2.01 191

http://www.symbian.com
http://www.symbian.com

10. Applications and Processes c© 2007 infowing AG

Key Meaning Type
name Application name (caption) String
file Application DLL file name String
uid Application UID Integer

// search for the mShell application
for a in app.find("mShell") do
print a

end
→ [mShell,C:\System\Apps\mShell\mShell.app,270549657]

app.hide

• function hide(uidOrName)→ null

Permissions: ReadApp

Hides the application identified by uidOrName, i.e. sends it to the back-
ground. uidOrName can be the application’s UID, or its name (caption).
Throws ErrNotFound if the application does not exist.

// hide the messaging application
app.hide("Messaging")

app.key

• function key(scancodes)→ null

Permissions: ReadApp+WriteApp

Capabilities: extended

• function key(keycodes, uidOrName)→ null

Permissions: ReadApp+WriteApp

Capabilities: extended

Sends a keyboard event or a series of keyboard events to the device or to a
specific application.
With one argument, sends scancodes to the device. scancodes can be a
single integer, an array of integers, or a string. A positive integer causes a

192 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 10.1. Module app: Application Control

press of the key with this scan code, a negative integer a release of the key
with this scan code (after changing its sign). Scan codes are OS and device
specific. Use ui.cmd (p. 77) after calling ui.keys(true) to obtain the scan
code for a specific key.
With two arguments, sends keycodes to the application defined by
uidOrName. keycodes can be a single integer, an array of integers, or a
string. Each integer or character causes a stroke of the key with this code.
Most key codes correspond to character codes, but some codes are reserved
for device specific keys. Use ui.cmd (p. 77) after calling ui.keys(false)

to obtain the key code for a specific key.

// Start the contacts application and send it a name
app.start("Contacts"); app.key("William", "Contacts")
// Simulate flip close and open on UIQ
app.key(0x77); sleep(2000); app.key(0x76)
// Show profile selection via power key on S60
app.key([0xa6, -0xa6])

app.open

• function open(file, uidOrName=null)→ Number

Permissions: Read+Write(file)+ReadApp+WriteApp

Compatibility of function app.open

Sony Ericsson UIQ3 phones cannot
handle uidOrName#null.

ErrNotSupported

Opens a file, using the application defined by uidOrName. uidOrName can
be the application’s UID, or its name (caption). If uidOrName=null, the
standard application for files of this type is used.
Returns the UID of the started application.
Throws ErrNotFound if the application does not exist.

// show an image file in the standard image viewer
uid=app.open("mShell.png");
// kill the app after ten seconds
sleep(10000); app.stop(uid)

m Mobile Shell Library Version 2.01 193

10. Applications and Processes c© 2007 infowing AG

app.runs

• function runs(uidOrName)→ Boolean

Permissions: ReadApp

Checks whether the application defined by uidOrName is running.
uidOrName can be the application’s UID, or its name (caption).
Throws ErrNotFound if the application does not exist.

// check whether the phone application is running
// the caption is in german...
app.runs("Telefon")
→ true

app.send

• function send(uidOrName, msgUid, params)→ null

Permissions: ReadApp+WriteApp

Capabilities: extended

Send a message to the application defined by uidOrName. uidOrName can
be the application’s UID, or its name (caption). msgUid must be an integer
identifying the message type, and paramsmust be a string whose bytes define
the message.
Throws ErrNotFound if the application does not exist or is not running.
This function is completely Symbian OS specific; using it requires additional
information typically found in the Symbian OS SDKs. See also app.view

(p. 196).

// have the WML browser open a link
// WML browser has UID 0x10008d39 on Series 60
app.send(0x10008d39, 0, "http://wap.248.ch")

app.show

• function show(uidOrName)→ null

Permissions: ReadApp+WriteApp

194 m Mobile Shell Library Version 2.01

http://www.symbian.com
http://www.symbian.com

c© 2007 infowing AG 10.1. Module app: Application Control

Shows the application identified by uidOrName, i.e. brings it to the fore-
ground. uidOrName can be the application’s UID, or its name (caption).
Throws ErrNotFound if the application does not exist or is not running.

// make sure the mShell application is shown
app.show(app.uid)

app.start

• function start(uidOrName, background=false)→ null

Permissions: ReadApp+WriteApp

Starts the application identified by uidOrName. uidOrName can be the ap-
plication’s UID, or its name (caption). If background=true, the application
is started in the background, otherwise it is brought to the foreground.
Throws ErrNotFound if the application does not exist.

// start the WML browser in the background
// WML browser has UID 0x10008d39 on Series 60
app.start(0x10008d39, true)

app.stop

• function stop(uidOrName)→ null

Permissions: ReadApp

Stops (ends) the application identified by uidOrName. uidOrName can be
the application’s UID, or its name (caption).
Throws ErrNotFound if the application does not exist.

// stop the WML browser
// WML browser has UID 0x10008d39 on Series 60
app.stop(0x10008d39)

m Mobile Shell Library Version 2.01 195

10. Applications and Processes c© 2007 infowing AG

app.view

• function view(uidOrName, viewUid)→ null

Permissions: ReadApp

• function view(uidOrName, viewUid, commandUid, params)→
null

Permissions: ReadApp+WriteApp

Switches to a view viewUid of the application identified by uidOrName.
uidOrName can be the application’s UID, or its name (caption).
With four parameters, sends the view the command commandUid and the
bytes of the string params.
Throws ErrNotFound if the application does not exist.
This function is completely Symbian OS specific; using it requires additional
information typically found in the Symbian OS SDKs.

function showcontact(id)
// build the parameter block
params=[1]; // EFocusedContactId
// encode the id as four byte integer
for i=1 to 4 do
append(params, id & 0xff); id = id shr 8

end;
app.view(0x101f4cce, // Phonebook application UID

4, // focused view
0x101f4ccf, // command UID
char(params)) // params must be string

end

showcontact(114)

app Constants

• const uid = 0x10204299 | 0xa0002f97 The UID of the m appli-
cation.

196 m Mobile Shell Library Version 2.01

http://www.symbian.com
http://www.symbian.com

c© 2007 infowing AG 10.2. Module proc: m Processes

10.2 Module proc: m Processes

This module manages m processes (scripts). It can start and stop, and show
and hide processes. It also supports a simple inter-process communication
(IPC) mechanism via unidirectional named pipes, and an argument string.
Processes are identified by the name of their script. Since shell
processes do not have an associated script and thus no name, they
cannot be managed from other processes. For instance, the script
c:\documents\mShell\BTScanner.m has an associated process with
name BTScanner. Process names are not case sensitive.

proc.arg

• function arg()→ String

Get the argument string specified when the process was started via proc.run
(p. 201). For processes started manually from the process list or via the au-
tostart feature, proc.arg returns the empty string.

// print the command line argument
print proc.arg()
→ hello

proc.close

• function close(name)→ null

• function close()→ null

With one argument, closes the process with the given name. Without an ar-
gument, closes the process it is called from.
Closing a process also stops it if it is running. If the process is already closed,
the call is ignored.
Throws ErrNotFound if there is no process with the given name.

// stop and close the BTScanner process
proc.close("BTScanner")

m Mobile Shell Library Version 2.01 197

10. Applications and Processes c© 2007 infowing AG

proc.find

• function find(name="*")→ Array

Gets a list of all known processes, whose name matches name. name is not
case sensitive and can contain the wildcards * (matches any sequence of char-
acters) and ? (matches any single character).

// start all processes which end on "Test"
for f in proc.find("*Test") do
proc.run(f)

end

proc.hide

• function hide(name)→ null

• function hide()→ null

With one argument, hides the process with the given name. Without an argu-
ment, hides the process it is called from.
Hiding a process simply shows the standard list of scripts and modules.
If the process is already hidden, the call is ignored.
Throws ErrNotFound if there is no process with the given name.

// hide the current process
proc.hide()

proc.pipe

• function pipe(name, create=true, bufsize=256)→ Native
Object

Opens or creates a pipe with name name and returns a stream to read from
and write to the pipe. The pipe can be opened by other processes using the
same name, thus providing a communication channel between m processes.
If create=false, the function throws ErrNotFound if the pipe does not
already exist.
If created, the pipe will have a buffer of bufsize bytes. The default size

198 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 10.2. Module proc: m Processes

is large enough for efficient inter-process communication (IPC): whenever
there is not enough room in the pipe buffer, a write to the pipe will block until
another process reads from the pipe to free up space.
However, if the same process reads from and writes to the pipe, the buffer
must be large enough to hold all data written between reads. This is the only
case where larger buffer sizes may be needed.
Once created, a pipe stream is accessed via module io (p. 35):

• io.read, io.readln, and io.readm read data,

• io.write, io.writeln, io.writem, io.print, and io.println

write data,

• io.avail gets the number of bytes which can be read without block-
ing,

• io.wait waits for data which can be read without blocking,

• io.close closes the stream (but not the pipe). The pipe will be deleted
when all streams referencing it have been closed.

• io.ces gets and sets the character encoding scheme. As with files, the
default is io.raw.

• io.timeout sets the timeout for read and write operations.

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is written.

With io.readm (p. 41) and io.writem (p. 44) are ideally suited for pipes,
as data is both written and read by m.
Only one process can read from the pipe at a given time. Issuing a read with
another read pending (from another process) will throw ErrInUse.
Up to sixteen processes can write to the pipe at a given time. Issuing a
write when sixteen other writes are pending (from other processes) will throw
ErrNotReady.
Pipes are unidirectional. For bidirectional communication between processes,
two pipes (with different names) are required.
The first trivial example just shows how to read from and write to a pipe:

m Mobile Shell Library Version 2.01 199

10. Applications and Processes c© 2007 infowing AG

// create a pipe stream and write to it
s=proc.pipe("SamplePipe");
io.writeln(s, "Hello world!");
// read from the pipe what was written into it
print io.readln(s)
→ Hello world!
// close the stream; this will also delete the pipe
io.close(s)

A more realistic example consists of two processes with two pipes. The first
process in script Reverser reads a line from pipe ReverserIn, and writes
the reversed line to pipe ReverserOut:

function reverse(s)
c=code(s);
i=0; j=len(c)-1;
while i<j do
h=c[i]; c[i]=c[j]; c[j]=h; i++; j--

end;
return char(c)

end

// create (or open) the two pipes
rin=proc.pipe("ReverserIn");
rout=proc.pipe("ReverserOut");
// loop forever reading, reversing and writing
while true do
io.writeln(rout, reverse(io.readln(rin)))

end

We now can use the reverser process:

// make sure the reverser runs
proc.run("Reverser");
rin=proc.pipe("ReverserIn");
rout=proc.pipe("ReverserOut");
io.writeln(rin,"Hello world!");
print io.readln(rout)
→ !dlrow olleH

200 m Mobile Shell Library Version 2.01

c© 2007 infowing AG 10.2. Module proc: m Processes

proc.run

• function run(name, arg="")→ null

Runs (starts) the process with the given name, and the argument string arg.
If the process is already running, the call is ignored.
The argument string is accessed via proc.arg (p. 197) from the target pro-
cess.
Throws ErrNotFound if there is no process with the given name.

// start the BTScanner process, passing "hello" to it
proc.run("BTScanner", "hello")

proc.runs

• function runs(name)→ Boolean

Returns true if the process with the given name is running, and false if it
is stopped or closed.
Throws ErrNotFound if there is no process with the given name.

// stop the BTScanner process
proc.stop("BTScanner");
// it should not be running now
proc.runs("BTScanner")
→ false

proc.show

• function show(name)→ null

• function show()→ null

With one argument, shows the process with the given name. Without an ar-
gument, shows the process it is called from.
Showing a process shows its console, or any other view it is displaying. If the
process was closed, it is opened, and its empty console is shown.
If the process is already shown, the call is ignored.
Throws ErrNotFound if there is no process with the given name.

m Mobile Shell Library Version 2.01 201

10. Applications and Processes c© 2007 infowing AG

// show the current process
proc.show()

proc.stop

• function stop(name)→ null

• function stop()→ null

With one argument, stops the process with the given name. Without an argu-
ment, stops the process it is called from, i.e. terminates it.
If the process is not running, the call is ignored.
Throws ErrNotFound if there is no process with the given name.

// stop the current process
proc.stop()

202 m Mobile Shell Library Version 2.01

c© 2007 infowing AG Index

Index
abs function (in bigint), 93

abs function (in math), 98

accept function (in bt), 123

accept function (in net), 136

acos function (in math), 98

active constant (in phone), 190

add function (in agenda), 107

add function (in bigint), 94

add function (in contacts), 112

adr function (in bt), 124

adr function (in net), 136

adr, bluetooth device field, 127

adr, contact field, 111

agenda, 103

database, 103

entry types, 103

fields, 103

agenda module, 103

alarm, agenda field, 104

alaw constant (in audio), 170

all constant (in agenda), 105

all constant (in files), 28

amr constant (in audio), 170

AMR-NB format, 167, 170

anniv constant (in agenda), 104

answer function (in phone), 187

app module, 191

appdir constant (in system), 47

append function (builtin), 7

append function (in io), 36

application control, 191

appt constant (in agenda), 104

arch constant (in files), 28

arg function (in proc), 197

argument string, 197

array module, 19

asin function (in math), 98

atan function (in math), 98

attmt constant (in msg), 157

attr function (in files), 27

attribute bits, 27

au constant (in audio), 170

AU format, 167, 170

audio file, 167

audio module, 167

authenticate constant (in bt), 128

authorise constant (in bt), 128

auto flushing, 38, 122, 132, 136, 199

avail function (in io), 37

availability, 3

background, 192

background color, 57, 58

base, agenda field, 104

beep function (in audio), 167

bg function (in graph), 58

bigint module, 93

birth, contact field, 111

m Mobile Shell Library Version 2.01 203

Index c© 2007 infowing AG

black constant (in graph), 56

blue constant (in graph), 57

Bluetooth, 33, 119

bluetooth

address, 119

channel, 121

device class, 120

device name, 119

device selection, 127

RFCOMM, 121

SDP, 120

starting service, 127

timeout, 128

UUID, 120, 129

visibility, 130

Bluetooth Serial Port, 131

BMP, 66

BOM, 36

bom constant (in io), 36

bps, serial configuration field, 132

bright function (in cam), 176

brush color, 57, 58

brush function (in graph), 58

bt module, 119

Builtin Functions and Constants, 7

busy function (in audio), 168

busy function (in ui), 76

buttons, pointer event field, 78

Byte Order Mark, 36

calendar, 103

cam module, 175

capabilities, 47

caps constant (in system), 47

cd function (builtin), 7

ceil function (in math), 99

cell, contact field, 111

cert function (in net), 137

certificate, 137

CES, 35

ces function (in io), 37

chan function (in bt), 124

char function (builtin), 8

character encoding scheme, 35

character set, 151

Check box, 80

cid function (in gsm), 183

circle function (in graph), 59

class, bluetooth device field, 127

clear function (in graph), 60

close function (in audio), 168

close function (in io), 37

close function (in obex), 158

close function (in proc), 197

close function (in zip), 52

cls function (builtin), 8

cmd function (in ui), 77

cmp function (in bigint), 94

code function (builtin), 8

codec, 170

collate constant (in array), 27

collate function (builtin), 9

Combo box, 80

comm module, 131

company, contact field, 111

204 m Mobile Shell Library Version 2.01

c© 2007 infowing AG Index

concat function (in array), 19

config function (in comm), 132

confirm function (in ui), 78

conn function (in bt), 125

conn function (in net), 138

conn function (in obex), 158

console, 90

console input, 37

console mode, 55, 63

contact

database, 110

fields, 110

contacts, 110

contacts module, 110

contrast function (in cam), 176

copy function (in array), 20

copy function (in files), 28

cos function (in math), 99

count constant (in cam), 181

country, contact field, 111

crc, ZIP member field, 53

create function (in array), 20

create function (in io), 38

csize, ZIP member field, 53

cts constant (in comm), 134

current directory, 4

cut function (in audio), 169

cyan constant (in graph), 57

daily constant (in agenda), 105

data, serial configuration field, 132

date function (builtin), 9

dayofweek function (in time), 48

dcd constant (in comm), 134

delete function (builtin), 10

delete function (in agenda), 107

delete function (in contacts), 113

delete function (in files), 29

delete function (in mms), 148

delete function (in msg), 154

delete function (in sms), 162

descr, message entry field, 156

descr2, message entry field, 156

dev constant (in system), 47

dial function (in phone), 187

dialog, 80

dialogs, 76

dir constant (in files), 28

div function (in bigint), 94

docdir constant (in system), 47

done constant (in agenda), 104

done, agenda field, 104

down constant (in graph), 76

downkey constant (in ui), 90

draft constant (in msg), 157

dsr constant (in comm), 134

dtmf function (in audio), 169

dtr constant (in comm), 134

e constant (in math), 102

e-mail, 33

edit function (in files), 29

ellipse function (in graph), 60

email, contact field, 111

encrypt constant (in bt), 128

end, agenda field, 104

m Mobile Shell Library Version 2.01 205

Index c© 2007 infowing AG

end, agenda repeat field, 105

end, certificate field, 137

equal function (builtin), 10

ErrAccessDenied, 38, 39, 169, 170

ErrArgument, 44, 49, 96, 98, 100, 101,
114–116, 130, 169, 172

ErrBadName, 112, 116

ErrCertificateUnknown, 138

ErrCorrupt, 41, 53

ErrDisconnected, 187–189

ErrDivideByZero, 94, 95

ErrEof, 41

ErrInUse, 167–169, 171–173, 176–180,
187, 199

ErrNotFound, 39, 52, 53, 107, 109, 113,
115, 117, 133, 135, 148, 149,
152, 154, 162, 163, 170, 192–
198, 201, 202

ErrNotReady, 169, 172, 176, 177, 179,
180, 199

ErrNotSupported, 46, 72, 130, 147, 151,
169, 170, 173, 180, 183

error function (in ui), 79

ErrOverflow, 100

ErrPathNotFound, 37–39

ErrTimedOut, 42, 129, 136, 145, 160

event constant (in agenda), 104

ExcIndexOutOfRange, 20–23, 25, 133,
177, 178

ExcInterrupted, 85

ExcInvalidNumber, 89

ExcInvalidParam, 112

ExcInvalidUTF8, 36

ExcNoSuchKey, 25

ExcNotComparable, 23, 26

ExcStringPosOutOfRange, 10, 11, 15, 18

ExcValueOutOfRange, 16, 42, 78, 91,
104, 114, 129, 133, 145, 150,
160, 163, 167, 179, 185, 187,
189

exists function (in files), 30

exp function (in math), 99

extadr, contact field, 111

extname, contact field, 111

extract function (in zip), 52

fax, contact field, 111

file

attribute, 27, 32

name, 4

file, application field, 192

files module, 27

files, MMS field, 149

fill function (in array), 21

find function (in agenda), 108

find function (in app), 191

find function (in contacts), 113

find function (in proc), 198

findall function (in agenda), 109

findnr function (in contacts), 114

flags, agenda field, 104

floor function (in math), 99

flush function (in io), 38

fname, contact field, 111

fold constant (in array), 27

folder constant (in msg), 157

font, 61, 79

206 m Mobile Shell Library Version 2.01

c© 2007 infowing AG Index

font function (in graph), 61

fonts function (in ui), 79

foreground, 195

form function (in ui), 80

full function (in graph), 62

full screen mode, 55, 62, 64

function

reference, 12

garbage collection, 45, 46

gc function (in system), 45

get function (in agenda), 109

get function (in contacts), 115

get function (in graph), 65

get function (in mms), 148

get function (in obex), 159

get function (in sms), 162

get function (in time), 48

GIF, 66

GIF format, 72

gokey constant (in ui), 90

GPRS, 136

graph module, 55

graphics, 55

colors, 56

coordinates, 55

green constant (in graph), 57

gsm module, 183

hal function (in system), 45

hangup function (in phone), 188

hexnum function (builtin), 11

hexstr function (builtin), 11

hidden constant (in files), 28

hide function (in app), 192

hide function (in graph), 66

hide function (in proc), 198

host name, 136

IAP, 136, 139

iap function (in net), 139

icon function (in graph), 66

id, message entry field, 156

idle constant (in phone), 190

idletime function (in ui), 82

ima constant (in audio), 170

imei constant (in gsm), 185

imsi constant (in gsm), 185

inactivity timer, 82

inbox constant (in msg), 157

inbox function (in mms), 149

inbox function (in sms), 163

incoming, call field, 189

index function (builtin), 11

index function (in array), 21

index function (in cam), 177

Infrared, 131

insert function (in array), 22

inter-process communication, 197, 199

Internet, 135

Internet Access Point, 136, 139

interval, agenda repeat field, 105

io module, 35

IPC, 197, 199

IrDA, 131

isarray function (builtin), 12

m Mobile Shell Library Version 2.01 207

Index c© 2007 infowing AG

isboolean function (builtin), 12

isfunction function (builtin), 12

isnative function (builtin), 13

isnum function (builtin), 13

isort function (in array), 22

isstr function (builtin), 13

issuer, certificate field, 137

JPEG, 66

JPEG format, 72

key function (in app), 192

keyboard, 77, 82

keys function (builtin), 14

keys function (in ui), 82

keystroke, 77, 83

labels function (in contacts), 115

lac, GSM network field, 184

large function (in ui), 83

Large integers, 93

leftkey constant (in ui), 90

leindex function (in array), 23

len function (builtin), 14

len function (in audio), 169

line function (in graph), 67

link function (in comm), 133

list function (in ui), 84

listen function (in net), 140

loc, agenda field, 104

loc, contact field, 111

local constant (in msg), 157

log function (in math), 100

long, GSM network field, 184

lower function (builtin), 14

m

process, 197

magenta constant (in graph), 57

math module, 98

mcc, GSM network field, 184

md5, certificate field, 137

mem function (in system), 46

menu command, 77

menu function (in ui), 85

menus, 76

Messages, 153

mfont function (in ui), 86

MIB enum, 151

mkdir function (in files), 30

MMS, 33, 153

mms module, 147

mnc, GSM network field, 184

mod function (in bigint), 95

monthlydate constant (in agenda), 106

monthlyday constant (in agenda), 106

move function (in files), 31

move function (in msg), 154

MP3, 167

ms function (in phone), 188

msg constant (in msg), 157

msg function (in ui), 87

msg module, 153

mul function (in bigint), 95

mulaw constant (in audio), 170

name function (in bt), 126

208 m Mobile Shell Library Version 2.01

c© 2007 infowing AG Index

name function (in net), 143

name, application field, 192

name, bluetooth device field, 127

name, contact field, 111

name, ZIP member field, 53

named pipes, 197

native object, 13

neg function (in bigint), 95

net function (in gsm), 184

net module, 135

new function (in array), 24

new function (in bigint), 96

new function (in contacts), 116

new function (in gsm), 184

new function (in phone), 188

note, contact field, 111

num function (builtin), 15

num function (in bigint), 96

num function (in time), 49

number

formatting, 11, 17

number constant (in gsm), 186

number editor, 80, 89

number, call field, 189

OBEX, 153

obex

timeout, 160

obex module, 157

object exchange, 157

off function (in cam), 178

off function (in vibra), 91

OID numbers, 137

on function (in cam), 178

on function (in vibra), 91

open function (in app), 193

open function (in audio), 170

open function (in comm), 133

open function (in io), 39

open function (in mms), 149

open function (in msg), 154

open function (in zip), 53

os constant (in system), 47

outbox constant (in msg), 157

own contact, 117

own function (in contacts), 117

pager, contact field, 111

parity, serial configuration field, 132

password editor, 80

path

name, 4

path function (in obex), 159

pcm16 constant (in audio), 170

pcm8 constant (in audio), 170

pen, 88

pen color, 57, 68

pen function (in graph), 68

pfonts function (in ui), 87

phone calls, 186

phone module, 186

phone, contact field, 111

pi constant (in math), 102

pict, contact field, 111

pipe function (in proc), 198

platform constant (in system), 48

m Mobile Shell Library Version 2.01 209

Index c© 2007 infowing AG

play function (in audio), 172

PNG, 66

PNG format, 72

po, contact field, 111

pointer, 78

pointing device, 77, 88

poly function (in graph), 69

pos function (in audio), 172

pow function (in bigint), 97

pow function (in math), 100

print function (in io), 39

println function (in io), 40

prio, agenda field, 104

proc module, 197

processes, 197

ptr function (in ui), 88

put function (in graph), 69

put function (in obex), 160

query function (in ui), 89

random function (in math), 100

raw constant (in array), 27

raw constant (in io), 35

read function (in io), 40

readln function (in io), 40

readm function (in io), 41

receive function (in mms), 150

receive function (in sms), 163

record function (in audio), 173

recording, 167

rect function (in graph), 71

red constant (in graph), 56

region, contact field, 111

remind constant (in agenda), 104

remove function (in array), 25

rename function (in files), 31

rep constant (in agenda), 104

rep, agenda field, 104

replace function (builtin), 15

RFCOMM, 121

RGB, 56

rightkey constant (in ui), 90

rindex function (builtin), 15

rindex function (in array), 25

ring, contact field, 111

ringing constant (in phone), 190

rmdir function (in files), 31

ro constant (in files), 28

root constant (in msg), 157

roots function (in files), 32

round function (in math), 101

rts constant (in comm), 134

run function (in proc), 201

runs function (in app), 194

runs function (in proc), 201

rw constant (in audio), 170

save function (in graph), 72

save function (in ui), 90

scale function (in graph), 72

scan function (in bt), 126

scan function (in files), 32

scan function (in msg), 156

scan function (in zip), 53

SDP, 120

210 m Mobile Shell Library Version 2.01

c© 2007 infowing AG Index

secret constant (in ui), 91

Secure connection, 138

Secure Sockets Layer, 138

seek function (in io), 41

select function (in bt), 127

Send as, 33

send as, 27

send function (in app), 194

send function (in files), 33

send function (in mms), 151

send function (in sms), 164

sender, MMS field, 149

sender, SMS field, 163

sent constant (in msg), 157

serial port, 131

serial, certificate field, 137

server certificate, 137

set function (in agenda), 110

set function (in contacts), 117

set function (in mms), 152

set function (in sms), 164

set function (in time), 49

short, GSM network field, 184

show function (in app), 194

show function (in graph), 73

show function (in proc), 201

shut function (in net), 143

signal function (in comm), 134

signal function (in gsm), 185

sin function (in math), 101

size function (in files), 34

size function (in graph), 74

size function (in io), 42

size, ZIP member field, 53

sizes function (in cam), 178

sleep function (builtin), 16

SMS, 153

sms module, 161

sort function (in array), 26

split function (builtin), 16

sqrt function (in math), 101

SSL, 135, 138

ssl constant (in net), 138

start function (in app), 195

start function (in bt), 127

start function (in net), 143

start, agenda field, 104

start, certificate field, 137

state function (in phone), 189

stdin constant (in io), 35

stdout constant (in io), 35

stop function (in app), 195

stop function (in audio), 174

stop function (in bt), 128

stop function (in net), 144

stop function (in proc), 202

stop, serial configuration field, 132

str function (builtin), 17

str function (in bigint), 97

str function (in time), 50

stream object, 35, 51, 133

sub function (in bigint), 97

subject, certificate field, 137

subject, MMS field, 149

m Mobile Shell Library Version 2.01 211

Index c© 2007 infowing AG

substr function (builtin), 18

sys constant (in files), 28

system module, 45

take function (in cam), 178

tan function (in math), 101

TCP, 135

TCP/IP

timeout, 144

TCP/IP networking, 135

terms, serial configuration field, 132

text editor, 80, 89

text function (in graph), 75

text, agenda field, 104

text, contact field, 111

text, SMS field, 163

time function (in files), 34

time module, 48

time, message entry field, 156

time, MMS field, 149

time, SMS field, 163

timeout function (in bt), 128

timeout function (in io), 42

timeout function (in net), 144

timeout function (in obex), 160

title, contact field, 111

TLS, 135, 138

tls constant (in net), 138

to-do list, 103

todo constant (in agenda), 104

Transport Layer Security, 138

trim function (builtin), 18

trunc function (in math), 101

type, agenda repeat field, 105

type, message entry field, 156

ui module, 76

uid constant (in app), 196

uid, application field, 192

UMTS, 136

units function (in comm), 134

unread, message entry field, 156

unread, MMS field, 149

unread, SMS field, 163

up constant (in graph), 76

upkey constant (in ui), 91

upper function (builtin), 19

url, contact field, 111

USB Serial Port, 131

use, 3

user activity, 82

utc function (in time), 51

utf16be constant (in io), 36

utf16le constant (in io), 36

utf8 constant (in io), 36

UUID, 120

uuid constant (in obex), 161

uuid function (in bt), 129

verbosegc function (in system), 46

version constant (builtin), 19

version, certificate field, 137

vibra module, 91

vibration control, 91

video, contact field, 111

view function (in app), 196

212 m Mobile Shell Library Version 2.01

c© 2007 infowing AG Index

view function (in cam), 180

visible function (in bt), 130

volume function (in audio), 174

wait function (in audio), 174

wait function (in io), 43

wav constant (in audio), 170

WAV format, 167, 170

weekly constant (in agenda), 105

weekofyear function (in time), 51

when, agenda repeat field, 105

white constant (in graph), 56

who function (in obex), 161

write function (in io), 43

writeln function (in io), 44

writem function (in io), 44

x, pointer event field, 78

X.509, 137

y, pointer event field, 78

yearlydate constant (in agenda), 106

yearlyday constant (in agenda), 106

yellow constant (in graph), 57

ZIP archives, 51

zip module, 51

zip, contact field, 111

m Mobile Shell Library Version 2.01 213

	Introduction
	Module and Function Availability
	Path and File Names

	Fundamental Modules
	Builtin Functions and Constants
	.append
	.cd
	.char
	.cls
	.code
	.collate
	.date
	.equal
	.delete
	.hexnum
	.hexstr
	.index
	.isarray
	.isboolean
	.isfunction
	.isnative
	.isnum
	.isstr
	.keys
	.len
	.lower
	.num
	.replace
	.rindex
	.sleep
	.split
	.str
	.substr
	.trim
	.upper
	Constants

	Module array: Array Functions
	array.concat
	array.copy
	array.create
	array.fill
	array.index
	array.insert
	array.isort
	array.leindex
	array.new
	array.remove
	array.rindex
	array.sort
	Constants

	Module files: File and Directory Access
	files.attr
	files.copy
	files.delete
	files.edit
	files.exists
	files.mkdir
	files.move
	files.rename
	files.rmdir
	files.roots
	files.scan
	files.send
	files.size
	files.time

	Module io: File and Stream Input/Output
	io.append
	io.avail
	io.close
	io.ces
	io.create
	io.flush
	io.open
	io.print
	io.println
	io.read
	io.readln
	io.readm
	io.seek
	io.size
	io.timeout
	io.wait
	io.write
	io.writeln
	io.writem

	Module system: System Related Functions
	system.gc
	system.hal
	system.mem
	system.verbosegc
	Constants

	Module time: Time and Date Functions
	time.dayofweek
	time.get
	time.set
	time.num
	time.str
	time.utc
	time.weekofyear

	Module zip: ZIP Archives
	zip.close
	zip.extract
	zip.open
	zip.scan

	User Interface
	Module graph: Screen Graphics
	graph.bg
	graph.brush
	graph.circle
	graph.clear
	graph.ellipse
	graph.font
	graph.full
	graph.get
	graph.hide
	graph.icon
	graph.line
	graph.pen
	graph.poly
	graph.put
	graph.rect
	graph.save
	graph.scale
	graph.show
	graph.size
	graph.text

	Module ui: User Interface Functions
	ui.busy
	ui.cmd
	ui.confirm
	ui.error
	ui.fonts
	ui.form
	ui.idletime
	ui.keys
	ui.large
	ui.list
	ui.menu
	ui.mfont
	ui.msg
	ui.pfonts
	ui.ptr
	ui.query
	ui.save
	Constants

	Module vibra: Vibration Control
	vibra.off
	vibra.on

	Mathematics
	Module bigint: Arbitrarily Large Integers
	bigint.abs
	bigint.add
	bigint.cmp
	bigint.div
	bigint.mod
	bigint.mul
	bigint.neg
	bigint.new
	bigint.num
	bigint.pow
	bigint.str
	bigint.sub

	Module math: Mathematical Functions
	math.abs
	math.acos
	math.asin
	math.atan
	math.ceil
	math.cos
	math.exp
	math.floor
	math.log
	math.pow
	math.random
	math.round
	math.sin
	math.sqrt
	math.tan
	math.trunc
	Constants

	Personal Data
	Module agenda: Agenda Database
	agenda.add
	agenda.delete
	agenda.find
	agenda.findall
	agenda.get
	agenda.set

	Module contacts: Contacts Database
	contacts.add
	contacts.delete
	contacts.find
	contacts.findnr
	contacts.get
	contacts.labels
	contacts.new
	contacts.own
	contacts.set

	Communications
	Module bt: Bluetooth Communication
	bt.accept
	bt.adr
	bt.chan
	bt.conn
	bt.name
	bt.scan
	bt.select
	bt.start
	bt.stop
	bt.timeout
	bt.uuid
	bt.visible

	Module comm: Serial Communications
	comm.config
	comm.link
	comm.open
	comm.signal
	comm.units

	Module net: TCP/IP Networking
	net.accept
	net.adr
	net.cert
	net.conn
	net.iap
	net.listen
	net.name
	net.shut
	net.start
	net.stop
	net.timeout

	Messaging
	Module mms: Multimedia Messages
	mms.delete
	mms.get
	mms.inbox
	mms.open
	mms.receive
	mms.send
	mms.set

	Module msg: Generic Message Access
	msg.delete
	msg.move
	msg.open
	msg.scan
	Constants

	Module obex: Object Exchange Client
	obex.close
	obex.conn
	obex.get
	obex.path
	obex.put
	obex.timeout
	obex.who
	Constants

	Module sms: Short Messages
	sms.delete
	sms.get
	sms.inbox
	sms.receive
	sms.send
	sms.set

	Multimedia
	Module audio: Audio Functions
	audio.beep
	audio.busy
	audio.close
	audio.cut
	audio.dtmf
	audio.len
	audio.open
	audio.play
	audio.pos
	audio.record
	audio.stop
	audio.volume
	audio.wait

	Module cam: Onboard Camera
	cam.bright
	cam.contrast
	cam.index
	cam.off
	cam.on
	cam.sizes
	cam.take
	cam.view
	Constants

	Telephony
	Module gsm: GSM information
	gsm.cid
	gsm.net
	gsm.new
	gsm.signal
	Constants

	Module phone: Phone Calls
	phone.answer
	phone.dial
	phone.hangup
	phone.ms
	phone.new
	phone.state
	Constants

	Applications and Processes
	Module app: Application Control
	app.find
	app.hide
	app.key
	app.open
	app.runs
	app.send
	app.show
	app.start
	app.stop
	app.view
	Constants

	Module proc: m Processes
	proc.arg
	proc.close
	proc.find
	proc.hide
	proc.pipe
	proc.run
	proc.runs
	proc.show
	proc.stop

	Index

