Tutorial & User Guide
Version 3.00

airbit

m Mobile Shell, Tutorial & User Guide, Version 3.00
Written by Lukas Knecht

www.m-shell.net

Document AB-M-TUT-741
© 2004-2008 airbit AG, 8008 Zrich, Switzerland

The information contained herein is the property of airbit AG and shall neither be
reproduced in whole or in part without prior written approval from airbit AG. All rights
are reserved, whether the whole or part of the material is concerned, specifically those of
translation, reprinting, reuse of illustration, broadcasting, reproduction by photocopying
machine or similar means and storage in data banks. airbit AG reserves the right to make
changes, without notice, to the contents contained herein and shall not be responsible for
any damages (including consequential) caused by reliance on the material as presented.

Typeset in Switzerland.

© 2008 airbit AG Contents

Contents

[(1__Introduction| 3
M1 Aboutml. 3
[1.2__Tutorial Structurel 4

[2__Quick Start Guide| 7
2.1 Instalingm| 7
2.2 ASample Script| 7
2.3 ASample Shell Session| 11

I3 The m Application| 13
3.1 TheScriptList| 13
B2 TheConsale 16
.......................... 19

[3.3.1 Sending and Receivingm Files| 19
3.4 Compilingm Scripts|. 21
[3.4.1 Producing Standalone Applications| 22
B5 TheEdiftod 23
3.5.1 Scrolling| 25
[3.5.2 FindandReplacel 26
[3.6 The Properties Dialog| 28
3.7 The Supervisor Dialog|, 29
3.8 The Permissions Dialog| 30

[4 _m Programming| 33

4.1 BasiCArrays| 33

m Mobile Shell Tutorial & User Guide Version 3.00 1

Contents © 2008 airbit AG

|4.2 Associative Arrays|o 37
4.3 Accessing SMS|o 38
4.4 EditingDatal 41
4.5 MakingitaFunction| L. 45
|4.6 Combining SMS and User Interface| 46
|4.7 Reading and Writing Files| 49
4.8 MakingitaModule| 53
49 Conclusionl. 57
|5 m Help System| 59
[5.1 Invokinghelpl 59
|5.2 Navigating through patterns| 60
|6 m Library Overview| 63
[7__Installation Guidel 65
1 dnstallafion]« o oo 65
|7.2 Registration| 66
Index 69

2 m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

1. Introduction

This tutorial is a beginner’s guide to successfully writing m shell scripts.
After working it through, you will know how to operate the m application
on your phone and have encountered most of the m language, including
its key functions.

1.1 Aboutm

A honest word first: when we say “‘writing an m script”’, we mean
"programming’’. We, the authors of m, believe that programming can
be a lot of fun. Programming m is particularly rewarding. You do it both
for and on a device that you often carry with you, maybe wherever you
go: first, some clever m scripts can make your smart phone a lot smarter;
second, you can try new ideas or perfect old ones virtually anytime and
anywhere.

So:

e If you are already familiar with any programming language, learning
m will be easy and straightforward.

e If programming is totally new to you, but you are a curious person
interested in technology, m scripting can open the door to an
exciting and virtually unlimited new activity.

o If however you are totally convinced programming is nothing for
you, you should only read sections 2] (p. [7) and [3] (p. [13), which
shows you how to use m to run scripts written by your friends, or
anybody else from the m community.

Unless you already are a smartphone Guru, or close to becoming one,
learning m will also give you a better understanding of the technologies
used by your smart phone, like the GSM network, Bluetooth, the agenda
or contacts databases, and much more.

m Mobile Shell Tutorial & User Guide Version 3.00 3

1. Introduction © 2008 airbit AG

Then, a word of warning: smart phones are powerful small computers.
Their hardware is in many respects comparable to, and in some respects
even superior to, that of a Personal Computer. However, coming out of
the factory, smart phones are limited to the capabilities the manufacturer,
and often the network provider, have considered worth or safe to include.
You can install additional software, but this software will also usually be
limited to the tasks it was developed for. There are many good (and a
few not so good) reasons this limitation exists. Among the good ones
are the following:

e You should not be allowed to manipulate the phone in a way that
makes it unusable or leads to loss of important data.

e Cellphone communications are expensive, and often special ser-
vices will be charged directly to your phone bill. Hence, running
the wrong software can become quickly quite expensive.

Unlike a lot of other smart phone software, m is very powerful in
a general sense. This means that with a malevolent script and you
giving the corresponding permissions, m can make the phone partially
unusable, delete important information, or even charge your phone bill
without you noticing it.

This is of course also true for a lot of other software, which you must
trust before starting to use it. m has a clear advantage here: you can
always verify scripts before using them, and you can explicitly deny access
to data on your phone or to its communication resources. For the scripts
you get from people or sources you do not know or cannot trust, this is
highly recommended.

1.2 Tutorial Structure

This tutorial is organized into the following parts:

e A quick start guide to your first m steps.

e An introduction to the m application and its views.

4 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 1.2. Tutorial Structure

e A step-by-step tutorial through many aspects of the m language.
As an example, you build up a more and more complete SMS
service.

e An introduction to the m help system and coding wizard.
e An overview of the m library modules.

e Detailed information on how to install m.

This tutorial will not explain every aspect of m in full detail. While
working through it, and while continuing to work with m, you should
refer to the following manuals for further and in-depth information:

e m Shell Reference (document IW-M-REF) covers all aspects of the
m language, and some aspects of the m application.

e m Shell Library (document IW-M-LIB) covers the library of standard
m modules and functions.

And don’t forget: the m website at www.m-shell.net/is always worth a
visit!

m Mobile Shell Tutorial & User Guide Version 3.00 5

http://www.m-shell.net

1. Introduction © 2008 airbit AG

6 m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

2. Quick Start Guide

2.1 Installing m

Before you can do your first steps with m, you must install it on your
phone and optionally register it:

1. Install m from the .sis file appropriate for your device,
e.g. mShell-s60-3rd.sis for a S60 3rd Edition phone, or
mShell-UIQ2.sis for a UIQ2 phone.

2. Start the mshe11 application. It will ask whether you want to
register via SMS. If you decide not to register, or to register
later, you should enter your own phone number to properly set
gsm.number (Library, p. .

For detailed information about installing and registering m, see chapter

7 (p-[63).

2.2 A Sample Script

Once m has been activated, it will show you the list of installed scripts
and modules.

m Mobile Shell Tutorial & User Guide Version 3.00 7

2. Quick Start Guide © 2008 airbit AG

%k Partytime .

g % SmsService .

- mShell % MyDB -
&% atytime .
% SmsService .
¥ MyDB .

mShell Back
Series 60 sample screen UlQ sample screen

A script is like an application you can run. As an example, let’s open the
Partytime script:

Series 60: Navigate to Partytime and press the confirm button.
ulQ: Select Partytime with the pen.

This will show the script's empty console. To start the script:

Series 60: Press the confirm button again.
ulQ: Press the [#] button.

m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

2.2. A Sample Script

> Partytime

EC " 3 abc
Waiting..

Process Edit

Process Edit

Haiting...

Series 60 sample screen

E\Ilpartytime .EI

The script runs and prints waiting...

UlQ sample screen

on the console. Now have a

friend send you an SMS with the text ““party’’. After a few seconds she
should automatically receive a reply from you, sent from the Partytime
script. In fact, the script acts as a very simple automatic SMS service.

Stop the script by selecting Process—Stop. You have just successfully

used your first m script!

You can look at the script by selecting Process—Edit Source.

m Mobile Shell Tutorial & User Guide Version 3.00 9

2. Quick Start Guide

(© 2008 airbit AG

File Edit

Partytime

" : ’
& wery simple m 5MS
seryices anybody sending
the keyword "party” wil
get a standard reply,

*

LUse sms

r="The party starts at Spm!";

File Edit

K s
A wery simple m SMI
service: anybody sending
the keyword "party" will
get a standard replwy.

=/

use sSms

r="The party starts at Spm!":

while true do ‘
print "Waiting...":
n=sms . receivel]
Hesks . get (n)
t=lower (trim(m["text"11];
if t="party" then

sms _send (m["sendex"], rl:
print "Replied to" m
["sender"] v,

Series 60 sample screen

*F’ar’[ytime EI

UlQ sample screen

If you want to change the reply message, or the text triggering the reply,
simply edit the script. File—Save & Go will start the script again, with
your changes. See section [3.5] (p. [23) for details.

For your convenience, the complete script is printed here, with comments

added:
/%

A very simple m SMS service:

anybody sending the keyword "party"

will get a standard reply.

*/

use sms

r="The party starts at 8pm!";

while true do
print "Waiting...";

n=sms.receive (); m=sms.get (n);
t=lower (trim(m["text"]));

if t="party" then

sms.send (m["sender"],

// we need it

// our standard reply
// loop forever

// let the user know
// get the next msg
// isolate the word
// if it’s party,

// send the reply

print "Replied to",m["sender"] // and log it

end
end

10 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 2.3. A Sample Shell Session

2.3 A Sample Shell Session

Besides running stored scripts, you can also execute m interactively, for
instance as a powerful calculator, or to manipulate data on your phone
you cannot easily access otherwise.
To open an interactive shell, select mShell—-New shell. The shell console
will prompt you for a command with m>.
After the prompt, enter the following calculation, then

Series 60: Press the confirm button.

ulQ: Press the [%] button.

14 / (14 + 3)
— 0.8235294118

Process Edit

Weloows to wm 112/
wm=14 f (14 + 3]
0.5235294115

C:\documents} *
. & mShell}

F - 1 abe mrrate=1_22:

. - - for eur=10 to 50 by 5 do
Welcame to m Y112 print eur,'EUR' .rateseur,'USD'
m>1d | (14 + 3) =
08235294118 |
mxrate=1.22;

for eur=10 £o 50 by 5 do
print. eur,'EUR'rate®eur, D"

end|
Process Edit [z][]l 2]cidocu.. 6% |
Series 60 sample screen UIQ sample screen

m Mobile Shell Tutorial & User Guide Version 3.00 11

2. Quick Start Guide © 2008 airbit AG

Or print a table of EUR versus USD:

rate=1.22;
for eur=10 to 50 by 5 do
print eur,’EUR’, ratexeur,’USD’
end
— 10 EUR 12.2 USD
15 EUR 18.3 USD
20 EUR 24.4 USD
25 EUR 30.5 USD

Interactive shells can execute arbitrary m code, including variable assign-
ments, function declarations, module imports and so on. In addition,
there are some useful functions to manipulate files:

cd Display and change current directory.
cls Clear the console output.

cp Copy files.

del Delete files.

dir List directories.

md Create directories.
mv Move files.
rd Remove directories.

ren Rename a file.
send Send a file (""Send As"’).
type Display text file contents.

For instance, the following command searches the c: drive for JPEG
(.3pg) files (/ r indicates that all subdirectories should also be searched):

dir c:*.Jjpg/r
— c:\Nokia\Images\Backgrounds\mShellLogo. jpg

See also chapter 3| (Reference, p.[55) for more information about inter-
active shells.

12 m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

3. The m Application

All m scripts and interactive sessions are run from within the m appli-
cation. The number of scripts which can be run simultaneously is only
limited by the phone’s resources.

Scripts and their modules can reside in any writable directory on the
phone, and scripts and their modules can be organized into folders.

3.1 The Script List

The applications main view shows the list of interactive sessions, and of
the folders, scripts, executables, and modules in the current document
folder. The current folder can be changed by clicking on a subfolder.

mShell View

- i i#) % Partytime (]
:= mShE" #* SmsService &
i % MyDB .|
ix dllinstall
Partytime
RailwayClock
5 SmsService
' 'MvDB
mShell Abbruch

Series 60 sample screen UIQ sample screen

m Mobile Shell Tutorial & User Guide Version 3.00 13

3. The m Application © 2008 airbit AG

The script type is indicated by the icon on the left:

m>

An interactive shell session.

A subfolder. The . ." folder indicates the parent folder.

A script.

A compiled .mex file which can be executed directly, i.e. an

“executable”. See also section 3.4 (p. [21).

A module for use by scripts, shells or other modules.

A script which is started when the m application is launched
with this current directory.

An executable which is started when the m application is
launched.

For a script, executable or interactive session, the icon on the right
indicates its state:

14

Inactive, without console.

Stopped, but with a console. Process—Close will make it inactive.
Running. Process— Stop will stop it.

Waiting for console input.

Was running, but produced an error. Open it to see the error
message.

m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 3.1. The Script List

The script list offers the following menu options:

mShell—New shell Create a new interactive shell session.
mShell—New script Create a new m script.

mShell-New module Create a new m module.

mShell—New folder Create a new subfolder in the current

folder.
mShell—-Send As Send the selected script or module (e.g. via
Bluetooth or as an e-mail attachment).
mShell—Delete Delete the selected script, module or folder,
after asking for confirmation.
mShell—Back Send the m application to the background.
mShell—Exit Exit the m application.
View—Properties Edit the application properties (see
(p. [28).
View— Supervisor Edit the supervisor properties (see

(p. 29). This options is only available if
the supervisor is supported and licensed.

View—Permissions Edit the permissions granted to m scripts
(see[3.8|(p. BOD.
View—About Display a message with details about the m

application, including the serial number.
View—Run Activation Re-run the activation process, for instance
to change the serial number.
View—Toggle Size (560 only): toggle the view size, showing or
hiding the title pane.

Pressing the delete key will also delete the selected item (after asking for
confirmation).

m Mobile Shell Tutorial & User Guide Version 3.00 15

3. The m Application © 2008 airbit AG

Searching Scripts

On S60 only, the script list supports searching via a popup window, very
much like searching in the standard contacts application.

Typing a character opens the window and shows only the scripts and
modules starting with the typed characters. Typing the clear/backspace
key removes the popup window.

mShell

i Partytime .

Searching a script on S60

mSshell Ahbruch

3.2 The Console

Every active script and shell session has a console associated with it. It is
displayed if a script or session is selected from the script list.

The console is a simple text viewer displaying the output of the print
statement (and the io.stdout (Library, p. stream). In interactive
shells, it also serves to input the m statements to be executed.

16 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 3.2. The Console

Service Edit

Got mood from +41764532123
Got party from +417253546700

:": SI]]SSErUi[E Got place from +393424537522

- 2 abc
Got mood from +41764532123
Lot party from +41793546700
Lot place from +393d424537522

Service Edit (£ |[B]smsSenice #[b |

Series 60 sample screen UlQ sample screen

To start or continue execution,

Series 60: Press the confirm button.

ulQ: Press the [#] button.
Console text is frozen up to the point of last output. In interactive shells,
this is typically all text up to the last m> prompt.
The console has a command history. A certain number of previous inputs
can be recalled:

Series 60: Press the down key.

uiqQ: Press the [B] button.

The console will cycle through the previous inputs.

m Mobile Shell Tutorial & User Guide Version 3.00 17

3. The m Application

(© 2008 airbit AG

The console offers the following menu options:

Process—Go
Process—Stop

Process—Close
Process—Edit Source

Process—Compile

Process—Auto Go

Process—Save Output

Process—Clear Output
Process—View Size

Edit—Back
Edit—Help

Edit—Copy
Edit—Cut
Edit—Paste
Edit—Find

18

Run the script or command.

Stop a currently executing script or com-
mand.

Close this script’s console, or close the shell
session.

Edit the source associated with the script,
or recall the previous input.

Compile the script into a .mex file which
can be executed directly; see also section
(p--

Toggle the ““auto go’ state of the script
or executable. If “auto go’' is enabled (in-
dicated by a ¥ or & icon), the script or
executable is started automatically when-
ever the m application starts.

Note that scripts are only started if they
reside in the current directory. Executables
are always started.

Save the console text to a file, using the
current source file encoding.

Clear the console, i.e. remove all text.

(S60 only): toggle the view size, showing or
hiding the title pane.

(560 only) return to the script list.

Show the help for the text before the cursor
(see chapter(p.).

Copy the selected text to the clipboard.
Cut the selected text to the clipboard.
Paste text from the clipboard.

Open a find/replace dialog and start find

mode (see section (p.).

m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 3.3. Script Files

3.3 Script Files

m scripts and modules are just files stored on the file system of your
phone. Since they are files, you can manipulate them using a file explorer
application or using m, and transfer them to other devices.

These files are located in the document directory of the m application.
This directory can be changed from within the application by navigating
between folders (i.e., subdirectories).

Scripts have the file extension .m, modules the extension .mm, and
compiled executables the extension .mex. For instance, the Partytime
script might correspond to file c:\documents\mShell\Partytime.m.
You can easily verify this from within a shell: open a shell (e.g. with
mShell-New Shell) and try the following (you don’t have to enter the
comments starting with //):

// get the document directory from module system
m>use system system.docdir
— c:\documents\mShell\
// show the file contents
type (system.docdir+"Partytime.m")
— /x
A very simple m SMS
service: anybody sending
the keyword "party" will
get a standard reply.
*/
use sms
r="The party starts at 8pm!";

3.3.1 Sending and Receiving m Files

Since m scripts and modules are ordinary files, you can send them to
other phones or a PC, and you can also receive them. The easiest way to
transfer files is usually via Bluetooth, but other transport media like USB
cable, Internet or MMS are also possible.

e To send a file, either use mShell—Send As from the script list, or

m Mobile Shell Tutorial & User Guide Version 3.00 19

3. The m Application © 2008 airbit AG

File—Save & Send As from the editor.

e To receive a file, simply have another device send it to you such
that it appears in your inbox. Then run the inbox2m script. It
scans your inbox for .m, .mm, .mex and . zip files, then shows the
available files in a list. Select the ones you want to load into m.

mShell |

O 1=k T na-rd 411-41 |
|

O *Deactivate.m 04-01 12:14
O *TetrixZ. zip 04-01 12:15

*Tetrix2.zip 04-01 10:...

Series 60 sample screen UIQ sample screen

Since inbox2m supports .zip files and extracts them into the
document directory, you can install entire packages with several
scripts, modules and supporting files in one go.

20 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 3.4. Compiling m Scripts

3.4 Compiling m Scripts

An m script and the modules it requires can be compiled into a single
""executable” file. These files have the extension .mex and are ideal to
quickly distribute m applications in a single file among m users.

A .mex file is marked in the script list by a @ icon. It can be executed
directly from the m script list by clicking on it.

Creating a .mex file is also the first step in creating an installable
application.

As an example, open the smsservice script from the script list, then
choose Process—Compile. A dialog will appear asking you for the name
of the executable file (without .mex extension).

§ SmsService

S -
Compile Script

Executable File P——— |

Executable File

Series 60 sample screen UlQ sample screen

After successful compilation, a new item smssService with icon & will
appear once you switch back to the script list. This will contain everything
that's needed to run smsservice from within m.

m Mobile Shell Tutorial & User Guide Version 3.00 21

3. The m Application © 2008 airbit AG

3.4.1 Producing Standalone Applications

Standalone applications for |Symbian OS can easily be produced from
applications written in m. These can be installed on other devices,
without requiring previous installation of m. Simply upload your .mex
file to a web application located on www.m-shell.net/Makemsis.aspx,
select the platform you want the .sis created tor (560 2nd or 3rd
edition, UIQ2 or UIQ3), and have the web application create a .sis file
you can download and install on other devices.

MyApp.mex

Your .mex file will be combined with the m runtime environment
mEnvironment .sis for the selected platform.

Here are the essential steps to create an SmsService.sis from
SmsService.mex:

1. Copy smsService.mex to a PC with internet connection, for
instance by using mShell—Send As.

2. On the PC, go to www.m-shell.net/Makemsis.aspx, and upload
SmsService.mex as .mex File, clicking on Add Files.

3. In Settings, select the appropriate platform, e.g. “S60 3rd", then
click on Create SIS.

4. In Your Files, you will find smsservice.sis to download. This
can now be installed on other devices.

22 m Mobile Shell Tutorial & User Guide Version 3.00

http://www.symbian.com
http://www.m-shell.net/Makemsis.aspx
http://www.m-shell.net/Makemsis.aspx

© 2008 airbit AG 3.5. The Editor

s Installationen

! T B

Fo
y - L9
i .
Launcher. lip

G |

WorldHate TRK ﬁ&:ﬂﬂ

Installed smsservice application

The web application has several options, for instance to change the
application title or caption, to supply another icon, or to install additional
files. These are explained in chapter [4] (Reference, p.[61).

3.5 The Editor

To write or edit an m script or module, you can use the editor:
To edit an existing script, open it from the script list, then

Series 60: Choose Process—Edit Source.
ulQ: Press the [E] button.

To edit an existing module, simply open it from the script list.

Only one file can be edited at a time: when loading a file, a previously
edited file will be saved.

As an example, open the partytime script and load it into the editor, as
explained above.

m Mobile Shell Tutorial & User Guide Version 3.00 23

3. The m Application © 2008 airbit AG

File Edit

i Ly
A wery simple m SMI
service: anybody sending
the keyword "party" will
get a standard replwy.

d very simple m Sk
services anybody sending _ d
. rint "Waiting...";
the keyword "party” wil pems _receive();
tesms . get (0 :
|;|Et g Standard rEDlE.". t=lower (trim(m["text"11];
Xlnl if t="party" then
sms send (m["sender"], rl:
Use sms print "Replied to" m

["sender"]

7

File Edit *F’ar’[ytime EI

Series 60 sample screen UlQ sample screen

Now replace the text ""The party starts at 8pm!"" by “‘Sorry, no party
tonight!".

You can start the modified script directly from the editor by
Series 60: choosing File—Save & Go
ulQ: pressing the [#] button.

Note that on S60, the confirm button inserts a new line when in the
editor.

24 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 3.5. The Editor

The editor offers the following menu options:

File—Save & Go Save the file and run the script.

File—Save & Compile Save the file and compile the script.

File—Save As Save the file (optionally changing the
name), but stay in the editor.

File—Save & Close Save the file, and return to the script list.

File—Save & Send As Save the file, then send it (e.g. via Bluetooth
or as an e-mail attachment).
File—Discard & Close Discard any changes, and return to the

script list.
File—Delete Discard any changes, and delete the file.
File—Rename Rename the file.
File—View Size (S60 only): toggle the view size, showing or

hiding the title pane.
The Edit menu is the same as in the console.

3.5.1 Scrolling

On S60, clicking the the shift (select) button once enters pagewise mode:
the up and down keys scroll backwards and forward one page at a
time. Pressing any other key or clicking the shift button again returns to
linewise mode.

On UIQ, the editor offers a vertical scroll bar to quickly move to another
part of the source text.

m Mobile Shell Tutorial & User Guide Version 3.00 25

3. The m Application © 2008 airbit AG

3.5.2 Find and Replace

The editor has a simple find/replace mechanism: Edit—Find opens a
dialog where find/replace arguments can be entered. The arguments
are:
Find The text to search for.
Replace The text to replace the search text with.
Find Up Select whether the initial search direction is up (back-
wards) or down (forward).
Case s. Select whether the search is case sensitive.
Whole w. Select whether the search only considers whole word
matches, ignoring substrings.

To replace all occurences of variable n by variable id in the Partytime
script, choose Edit—Find in the editor, then enter the search arguments.
Select whole w., as we only want to find isolated instances of the letter
n, not n as part of another word.

s Partytime

Find N Find/Replace < ‘

Feplace id Find| n *
Find lp MO Replace | id] |
Case . NO Find Up["]

Whole w: ¥es Case s [|

Whole w.

oK — 1

Series 60 sample screen UIQ sample screen

Press Ok to find the first occurence of n. After starting the search, finding
the first occurence and selecting it, the editor enters find mode, indicated

by the & icon. In find mode, three keys have a special meaning:

26 m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

3.5. The Editor

S60 Key ulQ Key

Meaning

Arrow Up Jog Dial Up

Arrow Down Jog Dial Down

Confirm Jog Dial Press

Search backwards for the next oc-
currence of the find string.

Search forward for the next occur-
rence of the find string.

Replace this occurrence, then search
for the next occurrence of the find
string in the same direction as be-
fore.

All other keys leave find mode. Find mode is also left if the find string
does not occur in the given direction.

Hence, to replace the next occurence of n by id and search the next

occurence,

Series 60: press the confirm button.

ulQ: press the Jog Dial.

« Partytime

g
AYEDY SITPIE T 21
service: anybody sending
the kevweord “party® will
II|I;|eta standard reply.
*
Use §ms
r="5orry, no party tonight!";
wehile true do
print "Wwaiting...";
id=sms.receival];
m=sms.getigl;

File Edit

Series 60 sample screen

File Edit

i
A wery simple m SHE
sarvice: anybody senﬂ:_.ni
the kezword sarty“ wil
fget a4 ztandard reply.

usﬁssms ty tonight!"
OFEY. no party tonight!!:
while true do
print "Waiting.
id=zms .receivei]:
r=SHms get[m]
t= lower[trlmim text" 1115
1f t="part
Sz . Send Tm sender" P
erint "Replied to'.m
["sendexr"]
end

and

L]

~ Partytime El

UIQ sample screen

m Mobile Shell Tutorial & User Guide Version 3.00 27

3. The m Application © 2008 airbit AG

3.6 The Properties Dialog

The properties dialog is accessed via View—Properties. The application
properties determine visual properties of m, and its behaviour with
respect to the system.

Properties < ‘

- pnints| 11 |
mfont: *Nokia Sans S..

mShell

points 12 4
focolor black bg':tflm
bocolor white outsize| 5120 |
niitsiza 5120 encoding
encoding hiom keep| busy |
~ Abbruch
Series 60 sample screen UlQ sample screen
The individual properties are:
mfont The m console font. A font with a leading asterisk is
scalable.
points The size of the font in pixels. This is ignored if the font is
not scalable.

fgcolor The foreground (text) color of console and editor.

bgcolor The background color of console and editor.

outsize Size of console buffer in characters.

encoding The encoding for source files: typical choices are bom
and ut £-8; other options are utf-161e, ut f-16be and
8-bit. See section [A.3|(Reference, p.[78) for details.

keep Select whether system exit requests are ignored; if set to
busy, requests are ignored if any script is running.

See appendix[A.3] (Reference, p.[78) for details about properties.

28 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 3.7. The Supervisor Dialog

3.7 The Supervisor Dialog

The supervisor dialog is accessed via View—Supervisor. The supervisor
properties determine the startup behaviour of m and the SMS control
parameters (see also chapter [5] (Reference, p. [65)).

This dialog is only available if the m Supervisor is supported and licensed
for this phone.

mShell

onboot: NO
Supervisor =
smsctrl Yes
1234 onboct[no <
mshell smsctrl [v|
smsnr| [EEEY

|
smskey| mshell |

oK abbruch

Series 60 sample screen UIQ sample screen

The individual properties are:

onboot Select whether the m application starts automatically
when the phone is turned on. For testing, set to once to
only autostart once. To automatically restart m whenever
it exits or crashes, select restart.

smsctrl Select whether the m application can be controlled via
SMS commands (requires m Supervisor & Viewer).

smskey The keyword prefix for all SMS commands. SMS not
starting with this keyword are ignored and end up in the
normal inbox.

smsnr The last digits of the sender phone number which can
control the m application via SMS. For instance, with
smsnr=1234, the SMS from all phones with a number
ending in 1234 can control m. If empty, anybody knowing
smskey can control m.

m Mobile Shell Tutorial & User Guide Version 3.00 29

3. The m Application © 2008 airbit AG

See appendix|A.3| (Reference, p.[78) for details about supervisor proper-

ties.

3.8 The Permissions Dialog

The permissions dialog is accessed via View— Permissions. These permis-
sions grant or deny access to data or resources on the phone.

There are three data areas which can be protected individually from
reading and/or writing:

1.

Doc: the directory where m scripts and modules reside, and all its
subdirectories and files. Granting access to the boc area is normally
safe, as it cannot harm the phone, only the m scripts.

app. the data modifiable through well defined interfaces, like
contacts, the agenda, messages and such. Granting read access to
the app area is normally safe, as it cannot harm the phone. When
write access to the app area is granted, a malevolent m script can
destroy valuable data.

a11: any directory or file on the phone. Granting read access
to the a11 area is normally safe, as it cannot harm the phone.
However, granting write access to the a11 area is generally not
recommended, as a malevolent script can render the phone unus-
able. It also allows a script to indirectly grant any other permission,
€.J. CostComm.

In addition, two communication areas can also be protected:

30

1.

FreeComm: any communication which is free, i.e. where charges
cannot occur. This includes reading messages and Bluetooth.

. CostComm: any communication which may be subject to charges.

This includes sending messages and networking via TCP/IP.

m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 3.8. The Permissions Dialog
: [:£] User Permissions :
- mShell |

ReadDoc
WriteDoc
Readioc: yes ReadApp v
WrDoc VESs WriteApp
Readépp wes FreeCamm
WrApp Ves Readall[|
FreeCom YES WriteAll [
Feadal no CostCormm

0K - Cancel

Series 60 sample screen UlQ sample screen

The individual permissions are:

ReadDoc
WriteDo
ReadApp
WriteAp
FreeCom
ReadAll
WriteAl
CostCom

Grant read access to the poc area.
c Grant write access to the poc area.
Grant read access to the app area.
p Grant write access to the aApp area.
m Grant access to free communication resources.
Grant read access to the a11 area.
1 Grant write access to the a11 area.
m Grant access to chargeable communication resources.

See also appendix|[A.4] (Reference, p.[82) for details about permissions.

m Mobile S

hell Tutorial & User Guide Version 3.00 31

3. The m Application © 2008 airbit AG

32 m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

4. m Programming

After having explored the m application, you are ready to start writing
m scripts. This chapter will introduce you to the m language and some
of its functions. At the end, you will have seen how a keyword driven
SMS service can be implemented, including a persistent database for its
content, and a user interface to edit it.

In particular, you will see how to:

e build a small database of keywords and responses using m arrays,
e monitor incoming SMS traffic,

e send SMS responses on incoming messages matching a keyword
from the database,

e implement a user interface to edit the database,
e combine SMS monitoring and user interface with a menu,
e save and load the database from and to a file,

e move the database part to its own module, so it is reusable from
other scripts.

The resulting m components, the script smssService and the module
MyDB, are part of the standard installation.

4.1 Basic Arrays

Our SMS service should examine each incoming SMS and check whether
it matches a list of keywords we defined. If a match is found, the

corresponding reply should be sent back. Let’s assume we initially start
with the following keywords and replies:

m Mobile Shell Tutorial & User Guide Version 3.00 33

4. m Programming © 2008 airbit AG

Keyword | Reply

party The party starts at 8pm!
place I am at home.

mood Just don’t ask.

For instance, if someone sends you an SMS with the text ‘mood"’, your
phone should automatically reply ““Just don’t ask.”".

In m, we could represent this table as two arrays:
keywords=["party", "place", "mood"];
replies=["The party starts at 8pm!",

"I am at home.",
"Just don’t ask."]

An array is a collection of values (numbers, strings, other arrays...). The
above two statements create two arrays and assign them to the variables
keywords and replies

A few observations may help clarifying:

e A variable is just a name we can assign a value to. In m, names
are case sensitive, so keywords and KeyWords are two different
names. Blanks or interpunction cannot be used in names, and they
must not start with digits.

e The = operator assigns a value to a variable.

e Two assignments (and two statements in general) must be sepa-
rated by a semicolon (;).

e An array is defined by a comma separated list of values between
brackets ([71).

e A string must be quoted. Both single quotes (*) or double quotes
(™) can be used.

Single elements of each array can be accessed by indexing :

34 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 4.1. Basic Arrays

print keywords[O0]

— party

print replies|[2]

— Just don’t ask

print replies|[3]

— ExcIndexOutOfRange thrown

print len(replies) // The number of elements in replies

— 3

And again a few remarks:

Indexing happens by appending the element index between brack-
ets after the array variable.

The index of the first element is zerd]

Using an index number for which no element exists is an error: it
throws ExcIndexOutOfRange. See section (Reference, p.[41)
for more information about exceptions.

The number of elements (length) of an array can be obtained by
calling the 1en function on the array.

Functions are called by their name (e.g. 1en), followed by the
arguments between parentheses ().

The rest of the line after two slashes (//) is considered a comment
and ignored by m.

Now that we have keywords and replies defined, how are we going
to use them? Remember we want to find the reply for an incoming
message. This means we have to search through all keywords. If we find
a match, the corresponding reply can be used. In m, we could write
something like this:

TConsequently, the index of the last element is the number of elements minus one. This
may appear strange, but follows most modern programming languages. Starting indexing
at zero has proven much easier to deal with in practice than starting at one.

m Mobile Shell Tutorial & User Guide Version 3.00 35

4. m Programming © 2008 airbit AG

msg=...; // the incoming message

i=0;

// start at the first element

while i<len (keywords) and keywords[i]#msg do
i++

end;

if i<len (keywords) then
reply=replies([i];
// send the reply

end

The above code fragment introduces two very important m control
structures, while and if:

i=0 assigns zero to the variable i.

The expression between while and do is evaluated. If it is true, the
statements between do and end are executed.

i<len (keywords) checks whether i has not yet reached the end
of the array.

keywords [1]#msg checks whether keywords[i] is not equal to
msg.

If both conditions are true, we move to the next element: i++
simply adds one to i. We could also have written i=i+1 instead.

The while loop ends if either the end of the array has been
reached, or keywords [1] equals msg.

The expression between if and then is evaluated. If it is true, the
statments between then and end are executed:

|fi<len(keywords),keywords[i]Iﬂustequa|msg,and\NerepW
with the corresponding text replies[il].

As an example, consider msg="place". With i=0, the while condition
is true, so i++ is executed, setting i=1. Since keywords[i] now equals
msg, the while condition is no longer true. And since i<len (keywords),
the reply repliesii] will be sent.

36

m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 4.2. Associative Arrays

4.2 Associative Arrays

In the previous section, we solved the problem of looking up data which
matches a given key in a table. Since this problem occurs very frequently
in programming, m offers a standard solution for it: associative arrays,
or arrays whose elements can be accessed directly with (string) keys. If
we define our tiny database of keywords and replies in a single array as
follows:

db=["party": "The party starts at 8pm!",
"place": "I am at home.",
"mood": "Just don’t ask."];

we can access the elements directly by their keys:

print db["place"]
— I am at home.
print db["mood"]
— Just don’t ask.
print db["hello"]
— null

A few remarks:

e An associative array is constructed by prefixing each array element
with a key and a colon (:). The key must be a string.

e A key in brackets ([1) directly indexes into the table and accesses
the corresponding element.

e Using an index string for which no element exists is not an error,
but returns the special value nu11. This is in contrast to indexing
with numbers, where the corresponding element must exist.

An associative array is still a normal array and can also be indexed by
numbers:

print len (db)
— 3

print db[1]

— I am at home

m Mobile Shell Tutorial & User Guide Version 3.00 37

4. m Programming © 2008 airbit AG

Arrays elements can also be modified via their keys, and new elements
can be added by indexing with a new key:

db["place"]="I am at work.";
db["hello"]="How do you do?";
print len (db)

— 4

print db

— ["The party starts at 8pm!","I am at work.",
"Just don’t ask.","How do you do?"]

4.3 Accessing SMS

Given our small database db, we can now look into receiving and sending
SMS.

To access the SMS functionality of your phone from m, we load the
corresponding module. There are many modules for different functions
of your phone, or of m; chapter] (p. gives you an overview. A few
good reasons for having modules:

e m can be extended by new modules, adding to its power and
flexibility. This includes modules written by yourself, as you will see
later on.

e Isolating different concepts into separate modules clarifies m and
makes it easier to understand and learn.

e Only loading a module when it is needed saves memory.

The module giving SMS access is called, not surprisingly, module sms
(Library, p.[167). Using it, our service could look as follows:

38 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 4.3. Accessing SMS

// load the SMS module

use sms
// define the reply database
db=["party": "The party starts at 8pm!",
"place": "I am at home.",
"mood": "Just don’t ask."];

while true do

// wait for a message

id=sms.receive () ;

// get the message

msg=sms.get (id) ;

// get the trimmed text in lowercase

t=

lower (trim(msg["text"]));

// 1f we find it in our database, reply
if db[t]#null then

print "Got",t,"from",msg["sender"];
sms.send (msg["sender"], db[t]);
sms.delete (id)

end

end

A few explanations:

A module is loaded (or imported) with the use command.

Theloopwhile true will forever execute the code between do and
the corresponding end. That's exactly what we want: our service
should only stop if we stop the process from the m application.

Functions from a module are called by their name, prefixed by the
module name and a dot: sms.receive () calls function receive
from module sms.

sms.receive () waits until a new SMS arrives, and returns a
number identifying the new message. We assign this number to
variable id.

Note the empty argument list after sms.receive. These are
required to make it clear to m that we want to call a function.

sms.get (id) retrieves the message with the id we got from
sms.receive (), and returns it as an associative array. The array
has, among others, the following members:

m Mobile Shell Tutorial & User Guide Version 3.00 39

4. m Programming © 2008 airbit AG

sender | The phone number of the sender of the message.
text The text of the message.

As you see, associative arrays are also often used by the m library,
whenever a set of related values has to be dealt with.

e Our service should also work if the message sent contains leading
or trailing blanks, and case should not matter. We therefore use
two functions built into m: trim to remove blanks, and 1ower to
convert all uppercase characters to lowercase. All put together, we
can simply write lower (trim(msg["text"])).

e We test whether our database in variable db contains a reply for
the message text t. Remember that db [t] returns nul1 if there is
no element for key t, so if do[t] does not equal nu1l1, we have a
reply.

e If there is a reply in the database, a confirmation is printed on the
console, and the reply is sent with sms . send () . This function takes
two arguments: the recipient of the message, and the message
text. Since we send a reply, the recipient is the sender of the
original message, which we find in msg["sender"].

e After sending the reply, we delete the message, as we do not
want our SMS inbox to fill up with messages we already replied
to. sms.delete (id) deletes the message with the id we got from
sms.receive ().

When creating automated replying systems, it is a good idea to check
whether we are not accidentally replying to a message coming from
ourselves, and entering into a never ending loop. Let's assume we have
added a keyword "echo" with reply "echo™:

db["echo"]="echo";

If we now send ourselves a message "‘echo”, the service will start to
reply to itself until it is stopped.

This is unlikely to happen, but if it does, the consequences may be quite
expensive.

In m, there is a simple way to check whether we sent a message to
ourselves: gsm.number (Library, p.[198) contains our own phone number

40 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 4.4. Editing Data

which we can check against. The above check for a valid message can
be completed by:

// 1f it’s not from us, and we find it
// in our database, reply
if msg["sender"]#gsm.number and db[t]#null then

Don’t forget to add module gsm (Library, p.[195) to the use clause:

use sms, Jgsm

4.4 Editing Data

At this point we have a working SMS service. However, to modify replies
or add new keywords, we must modify our script. This is not really all
that user friendly. It would be much better to have a graphical user
interface allowing us to edit the database. We would like to be able
to modify replies for existing keywords, and to add new keywords and
replies.

In m, it is fairly easy to construct such a user interface using the functions
from module module ui (Library, p.[82):

First, the user should be able to choose one of the existing keywords to
modify it, or pick an item <New> if she wants to add a new keyword/reply
pair:

use ui, array

list=keys (db) ;

array.sort (list);

array.insert (list, 0, "<New>");
i=ui.list (list);

This code fragment, if executed on our database variable db, shows the
following dialog:

m Mobile Shell Tutorial & User Guide Version 3.00 41

4. m Programming © 2008 airbit AG

mShell
P <ew
rnood
| <New> party
| e ————— e ———————————— place
mood
party
place
OK Cancel
Series 60 sample screen UlQ sample screen
Comments:

e We need two other modules, module ui (Library, p. and
module array (Library, p.[20).

e The builtin keys function is called to obtain an array with the keys
from db. We assign it to variable 1ist.

e The array.sort () function sorts the list alphabetically.

e The array.insert () function inserts the string <New> at the
beginning of the list.

e Eventually, the ui.1ist () function is called to display the dialog.
This function returns when the user chooses an item, or cancels
the dialog. We assign the result to variable i.

Once the user has made her choice, we can add a new key-value pair, or
edit an existing one.

42 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 4.4. Editing Data

i=i[0];
if 1i=0 then // <New> was selected: add
f=ui.form(["Key":"", "Text":"\n"]);
if f#null then
k=f["Key"];
if db[k]=null then db[k]=f["Text"]
else ui.error(k + " already exists") end
end
else // an existing keyword was selected: edit
k=1list[i];
f=ui.form([k, "Text":db[k]+"\n"]);
if f#null then db[k]=f["Text"] end
end

A few explanations:

o If the user did not cancel the dialog, ui.1ist returns an array with
the indices of the selected items. Since the call to ui.1ist did not
specify multiple items to be selected, the index array i will always

have a single index 1 [07].

o |f the selected index is zero (1=0), the user has chosen <New> (since
list [0]="<New>"), and we display a dialog to add a keyword and

a reply.

Otherwise, the reply of the keyword at 1ist[i] is to be edited,

and we display the corresponding dialog.

e The ui.form() function takes an associative array of values to be
edited, and displays a corresponding dialog. The keys of the array

become labels in the dialog:

m Mobile Shell Tutorial & User Guide Version 3.00

43

4. m Programming © 2008 airbit AG

44

SmsService
party
A The party mShell > |
starts at 8pm! narty
Text
0K cancel
Series 60 sample screen UlQ sample screen

Inside the strings for the Text fields, you will note a \n. This is
the code for a line break (the n stands for “‘newline’”). Having a
new line in the contents for a ui.form() field marks this field as
multi-line, so the field can contain several lines, and can also scroll
vertically.

ui.form returns null if the dialog has been canceled. If this
happens, we do nothing. Otherwise, £ is an associative array
containing the edited values: for instance, £ ["Text "] contains the
edited reply text.

Before adding a new pair with keyword k, we check whether
it already exists. If it does, we display an error message with

ul.error ().

party already ' Error |
exists [] party already exists
Series 60 sample screen UIQ sample screen

m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

4.5. Making it a Function

4.5

Making it a Function

We now have the bits and pieces together to create a function in m
which edits any array of key-value pairs, for instance our db variable. We
would like to have a function edit, which we can simply call, passing
our database as a parameter:

edit (db)

And here is such a function:

function edit (table)
while true do

// display the list of keywords
list=keys (table);
array.sort (list);
array.insert (list, 0, "<New>");
i=ui.list (list);
// 1f the user canceled, i is null
if i=null then break end;
i=i[0];
if 1=0 then // <New> was selected: add
f=ui.form(["Key":"","Text":"\n"]);
if f#null then
k=f["Key"];
if table[k]=null then tablel[k]=f["Text"]

else ui.error(k + " already exists") end
end
else // an existing keyword was selected: edit
k=1list[i];

f=ui.form([k, "Text":table[k]+"\n"]);
if f#null then table[k]=f["Text"] end
end

end

end

e A function is defined by the keyword function, followed by its
name, and the argument list in parentheses (). Here, there is a
single argument, table, which is the array we want to edit (if

there are multiple arguments, separate them by commas).

m Mobile Shell Tutorial & User Guide Version 3.00

45

4. m Programming © 2008 airbit AG

e The following code up to the corresponding end is the body of the
function, which will be executed each time it is called.

e All variables inside the function, including the arguments, are /ocal
to the function; they are not the same variables as those outside
the function. For instance, the statement

list=keys (table)

only modifies the variable 1ist in the function, not any other
variable with this name used outside the function or in another
function.

e The whole editing process is put into a loop, which is repeated
until the user cancels the list dialog. If this happens, i=nu11, and
the break statement is executed, leaving the loop and eventually
returning from the function.

So if we write
edit (db)

this means executing the function edit, passing our variable db to it.
During the call, table=dp, and all modifications to the elements of
table are in fact modifications to the elements of db.

For an in-depth presentation of functions, refer to section[2.8|(Reference,

p.[32).

4.6 Combining SMS and User Interface

Now that we have our user interface, we would like to allow the user to
edit the database while the SMS code presented in section [4.3](p. is
running.

Doing so is relatively straightforward by adding a menu with two options:
the Edit option should run the editor (our function edit ()), and Stop
should stop the script. With function ui.menu (), it is trivial to install a
menu:

ui.menu ("Service", ["Edit", "Stop"])

46 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 4.6. Combining SMS and User Interface

adds a menu with title service and the two options:

[‘Service | Edit
Edit to+41TIE1LE1TE
ok Stop
Process
Got party from +41798116176
|Edit |
Stop
Process 3
Select Cancel % |[B]SmsSenice #[% |
Series 60 sample screen UIQ sample screen

If the user picks an option, ui.cmd () will return it:

print ui.cmd ()
— Edit

But now we have a problem: if the user hasn’t picked an option before,
ui.cmd () will wait. Likewise, sms.receive () will wait until an SMS
arrives. So we have two events to wait for, but we can only wait for one
at a given point in our code.

There is a simple solution to this: both sms.receive () and ui.cmd ()
take a timeout: they do not necessarily wait forever, but optionally
only for a certain period. Almost all functions in m which wait for a
certain event have such timeouts. The timeout period is always indicated
in milliseconds (ms, 1/1000 of a second). If the timeout expires, the
functions typically return nu11.

For instance,
sms.receive (1000)

waits one second for a new message, then simply returns nu11 if no

m Mobile Shell Tutorial & User Guide Version 3.00 47

4. m Programming © 2008 airbit AG

message arrives within this period?}

With this simple method, we can combine the user interface and the
SMS monitoringﬂ

ui.menu ("Service", ["Edit", "Stop"]) ;
do
id=sms.receive (1000) ;
if id#null then // there is a new message
msg=sms.get (id) ;
t=lower (trim(msg["text"]));
if db[t]#null then
print "Got",t,"from",msg["sender"];
sms.send (msg["sender"], db[t]);
sms.delete (id)
end
end;
cmd=ui.cmd (5000);
if cmd="Edit" then
edit (db)
end
until cmd="Stop"

Remarks:

e The do-until loop executes code until a condition becomes true:
in this case, until the user picks stop from the menu. It is similar to
the while-do-end loop, but the condition is tested at the end of
the loop.

e If sms.receive () times out, it returns null: no message can be
checked in this case.

e The script does not respond to a pick from the menu while
sms.receive () IS executing. To minimize the time this happens,

20r has arrived before sms . receive () was called.

3This technique of regularly polling two inputs is not ideal for a cellphone. Even if
no message is arriving and we are not editing our database, the m application wakes up
every few seconds to check for either event. This unnecessarily drains the battery. Better
solutions are possible, e.g. with interrupting ui . menu or with multiprocessing, but are
beyond the scope of this tutorial.

48 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 4.7. Reading and Writing Files

the timeout for the sms.receive () is only one second, whereas
the timeout for ui.cmd () is five seconds.

o If ui.cmd () times out, the variable cma becomes nu11, which is
different from both "Edit " and "stop". There is no need to check
this case explicitly.

4.7 Reading and Writing Files

So far, we have an SMS service which automatically responds to incoming
messages, and allows the keywords and messages to be edited. But our
script is not perfect: whenever it stops, all changes to the database are
lost. We must make our database persistent, so it is still around when
we restart the script, even after turning off the phone.

To persistently save data, our phone offers a file system. This is very
similar to file systems on other computers, be it Windows® or a UNIX®-
like system. The main difference is that by far the most common media
to store files on larger computers are hard disks, whereas your phone
most likely uses memory chips, but this doesn’t matter at all. The idea of
the file system remains the same.

As on Windows, the file system is organized into drives with directories
(folders) and subdirectores. Each file has a name which must be unique
to its directory. Section[1.2](Library, p.[4) tells you more about it.

To access a file from m, module module io (Library, p.[36) is used. Using
this module, a function save () saving our database to a file could look
as follows:

use io
function save (table, file="table.dat")
f=io.create(file);
for k in keys(table) do
io.writeln (f, k);
io.writeln (f, tablelk])
end;
io.close (f)
end

Some explanations:

m Mobile Shell Tutorial & User Guide Version 3.00 49

4. m Programming © 2008 airbit AG

e save () takes two arguments, the table to save, and a file

name. The file name is optional and defaults to "table.dat". So
the two following calls are equivalent:

save (db) ;
save (db, "table.dat")

A function can have as many optional arguments as needed,
provided they are the last ones. Section[2.8|(Reference, p.[34) gives
you the details.

e io.create(file) cCreates a new, empty file and returns a handle

to it. This handle can then be used to write to and read from the
file. The handle is assigned to variable .

e The loop starting for k in keys(table) do iS executed once

for each element in the array returned by keys (table).

e io.writeln(f, k) writes a line with the string k (the keyword

in our database) to the file represented by £. The contents of the
table (the reply) is written to the next line.

e After all keywords and replies have been written, io.close (f)

closes the file.

If we execute the following code:

save (db)

the file table.dat may contain this (use a shell session to easily type the
contents of a file):

m>type table.dat
— party

The party starts at 8pm!
place
I am at home.

mood

Just don’t ask.

A function 1oad () to read this data back in could look as follows:

50

m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 4.7. Reading and Writing Files

function load(file="table.dat")
table=[];
try
f=io.open(file);
k=io.readln (f);
while k#null do
table[k]=io.readln (f);
k=io.readln (f)
end;
io.close (f)
catch e by end;
return table
end

This function is slightly more complicated:

e We start with an empty array, and assign it to local variable tab1e.

e ioc.open(file) opens an existing file to read it and, like
io.create (), returns a handle to it. However, if the file doesn’t
exist, it throws ErrNotFound. To cope with this case, the call to
io.open () is putinto a t ry-catch-end block: within such a block,
any exception thrown will be catched, and execution continues
with the statements between catch and end. Here, there are no
such statements, so table remains empty if io.open () fails. This
is exactly what we want.

e If io.open () is successful, we read the first line from the file using
io.readln (f), which must be a keyword. io.readln () returns
null if there is no more data, so we can use a while loop to go
through all keywords.

e Inside the while loop, the next line is assigned to tablel[k],
appending an element with the key x to our table, followed by
reading the next keyword.

e After all lines have been read, the file is closed with a call to
io.close().

e return table returns the contents of variable table as the
function result. To load our database from default file table.dat,
we simply call 1oad () and assign its result to our variable db:

m Mobile Shell Tutorial & User Guide Version 3.00 51

4. m Programming © 2008 airbit AG

db=1oad ()

The two functions 1o0ad () and save () we have presented above do their
job nicely. But there is a small problem: our reader assumes the both
keywords and replies fit on exactly one line. However, in our edit ()
function, we explicitly allowed replies to cover multiple lines.

To solve this problem, we could add a special separator token marking
the end of a line, making 10ad () considerably more complicated. But
m offers a much simpler solution: the two functions io.readm() and
io.writem() allow to write (almost) any m value directly to a file, and
read it back in, all in one go. io.writem() not only writes the data,
but also information about its type, the length of arrays, their keys, etc.
io.readm () uses thisinformation to reconstruct the value from the fild?

The disadvantage is that the file written is no longer a simple text file you
can edit yourself. Instead, it is a binary file highly sensitive to changes, so
it is best to treat such files as a black box.

With these two functions, saving and loading becomes particularly easy:

use io

function save (table, file="table.dat")
f=io.create(file);
io.writem(f, table);
io.close (f)

end

function load(file="table.dat")
try
f=io.open(file);
table=io.readm(f);
io.close (f);
return table

catch e by
return []
end
end

e save () Now just creates the file, writes table, and closes the file

4In computer jargon, this is called serialization and deserialization.

52 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 4.8. Making it a Module

again.

e load() does exactly the opposite, and returns the data read. If
the file does not exist or cannot be read, this is catched by the
try-catch block, and we return an empty array: return [].

4.8 Making it a Module

Before we add all the pieces together, we want to introduce a last
concept: modularization. Remember we have written three functions:

e function edit (table) to edit a database table,
e function save (table, file) 1o save a database table to a file.

e function load(file) to load a database table from a file.

These three functions can manage any database of key-text pairs, not
just the keywords and replies for our SMS service. We should therefore
make them generally available, and create a module from them.

We will call our module MypB. The module is part of the standard
installation, so you don’t have to create it with mShell—-New module:

New File
m module name

3 ABC New File = |
|MyDB | mmodule name| MyDB_|

oK, cancel

Series 60 sample screen UlQ sample screen

Instead, you can simply open & MyDb to look at the module code below:

m Mobile Shell Tutorial & User Guide Version 3.00 53

4. m Programming © 2008 airbit AG

/ x %
A simple key-data database.
*/

use io, array, ui

/* %
Load the database from a file.
@param file the file to load the database from.
@return the database.
x/
function load(file="table.dat")
try
f=io.open(file);
table=io.readm (f) ;
io.close (f);
return table
catch e by
return []
end
end

/ x %
Save the database to a file.
@param table the database to save.
@param file the file to save the database to.
x/
function save (table, file="table.dat")
f=io.create (file);
io.writem(£f, table);
io.close (f)
end

54 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 4.8. Making it a Module

/ x*
Present a user interface to edit a database.
@param table the database to edit.
*/
function edit (table)
while true do
list=keys (table);
array.sort (list);
array.insert (list, 0, "<New>");
i=ui.list (list);
if i=null then break end;
i=i[0];
if i=0 then
f=ui.form(["Key":"","Text":"\n"]);
if f#null then
k=f["Key"];
if table[k]=null then tablel[k]=f["Text"]
else ui.error(k + " already exists") end
end
else
k=1list[i];
f=ui.form([k,"Text":table[k]+"\n"]);
if f#null then tablel[k]=f["Text"] end
end
end
end

Remarks:

e The module source is, like a script source, just a sequence of m use
clauses, function definitions and statements. Outside the module,
the functions and variables will be accessible by prefixing them
with the module name, e.g. MyDB. 1oad.

e Since a module will be read by others who are trying to understand
what it has offer, it is a good idea to add comments. Multi-line
comments start with slash-star (/+), and end with star-slash (x/).
All characters in between are ignored by m. We recommend the
tags @param and @return known from Java™ to comment on
parameters and return values.

m Mobile Shell Tutorial & User Guide Version 3.00 55

4. m Programming © 2008 airbit AG

To finish, we have a look at # SmsService, which uses MyDB:

/[**
A configurable SMS service.
*/

use sms, mydb, ui

const file="SmsService.dat";
db=mydb.load (file);
ui.menu ("Service", ["Edit", "Stop"]) ;
do
id=sms.receive (1000) ;
if id#null then
msg=sms.get (id) ;
t=lower (trim(msg["text"]));
if db[t]#null then
print "Got",t,"from",msg["sender"];
sms.send (msg["sender"], db[t]);
sms.delete (id)
end
end;
cmd=ui.cmd (5000) ;
if cmd="Edit" then
mydb.edit (db); mydb.save (db, file)
end
until cmd="Stop"

Remarks:

e The mydb in the use list makes sure the MypB module is loaded.
Note that, unlike variables and functions, module names are not
case sensitive. This is because names in the Symbian OS|file system
are not save sensitive, so the modules MyDB and mydb cannot be
distinguished.

e The database is written to and read from file smsservice.dat.
We assign this to variable file and make it const, so it cannot
be modified. This is not really necessary; it is mainly a hint to the
human reader.

e Before the service starts receiving SMS, we load the database by

56 m Mobile Shell Tutorial & User Guide Version 3.00

http://www.symbian.com

© 2008 airbit AG 4.9. Conclusion

calling a function from our module: mydo.1oad (file).

e Every time the database has been edited, it is saved: mydb.edit ()
is immediately followed by mydb. save ().

And that's all there is!

4.9 Conclusion

Hopefully, this chapter has presented enough of m to get you started.
A good point to continue would be to further extend smsservice. For
instance, you could:

e make content only available to numbers found in your contacts
database, (see contacts. findnr (Library, p.[120)),

e add variables to the content, for instance to include information
about your location (see gsm.cid (Library, p.[195)),

e add other information to the content, for instance whether the
incoming messages should be deleted, or a count for the number
of messages received,

e play a certain sound if a certain message arrives (see audio.play

(Library, p.[178)).

Or you simply start experimenting towards the perfectly smart phone you
always dreamt of: the next chapter presents a tour d'horizon of the m
library of functions to give you some ideas of what'’s possible and what
you could achieve.

m Mobile Shell Tutorial & User Guide Version 3.00 57

4. m Programming © 2008 airbit AG

58 m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

5. m Help System

The m help system adds IDE (Interactive Development Environment)
functionality to the editor. It offers source context sensitive information
about m language constructs, its library, and other m modules, and
significantly reduces the typing required to enter correct m code.

5.1 Invoking help

The help system is invoked from the editor (or the interactive shell):

Series 60: Double click the shift (select) button.
uiQ: Press the [2] button.

Alternatively, you can invoke it with Edit—Help.
The help being displayed depends on the code before the cursor position:
e If it is a function or constant from a module, the help for this
module is displayed, with the corresponding function or constant

selected. Module aliases (use ... as ...) are resolved before
looking up the module.

e Ifitis a keyword or a builtin function or constant, the default help is
displayed, with the corresponding language construct or constant
selected.

Let's assume the following code fragment:
use graph as g

for i=1 to 10 do

g.t
end

If the cursor is positioned just after "g.t" (i.e. you have just typed it in)
and you invoke help, the following page will be displayed:

m Mobile Shell Tutorial & User Guide Version 3.00 59

5. m Help System © 2008 airbit AG

Help

grapn.pent l: AXrax £2y)
graph.point (x. ¥]: null
gragh.poly(x, ¥): nudl
gragh.rectix, ¥, w. hl: ndl
gragh.save(path) : null

m Help (graph) E

null gragh.save(gath, =, ¥, w, hl:
null

graph.scale(scaled): Boolean aragh.soale(soaled): Boolean

graph.scale(): Boolean gragh.soala(): roclean
gragh.show(): null

graph.show(): null gragh.size(): Arvay

gragh.size(text): Array

graph.size(): Array
graph.size(text): Array

graph.down=-1

%

Use Cancel m Help (graph) ~ ?[& |

Series 60 sample screen UlQ sample screen

Note that the first function or constant matching the code before the
cursor is selected. In our example, this is graph.text.

You can select another function by navigating up or down.

5.2 Navigating through patterns

If you select an item from the help by pressing Use or the confirm key, it
is inserted into the code. Its variable parts (arguments) are then quoted
between « and » (“"french quotes”).

If there are such arguments at or after the cursor, pressing the confirm
key in the editor (Jog Dial on UIQ) gets a different meaning: it selects the
entire argument, thus allowing to:

e simply replace it by characters you type,
e remove it by pressing the delete or backspace key,
e retain it without quotes by pressing the confirm key again.
This feature significantly reduces the number of keystrokes required to

enter code: let’s assume you have continued writing the code fragment

60 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 5.2. Navigating through patterns

to draw text, and now want to add an if-then-else construct to color
the text, alternating between red and green:

use graph as g
for i=1 to 10 do
if
g.text (10, 15%i, "i="+i)

end

Invoking help with the cursor after "if" will display the following help
screen:

=y
elsif expr then
statements
while expr do
statemants
end ;
do
statements v
Cancel m Help (defaul) 2[5 |
Series 60 sample screen UIQ sample screen

Pressing Use inserts this skeleton into the code. Note that the first
argument «expr» is already selected, so you can immediately replace it:
type i%2=1, then press confirm to select «statementss. Replace it by
typing g.pen (g.red), maybe using help again.

m Mobile Shell Tutorial & User Guide Version 3.00 61

5. m Help System © 2008 airbit AG

Process Edit
T el t 1.1zl
= 4 E:%[Aullzﬁlnents'l. i’ woure sTah as o
= & m5she
F : - % ab £or i=1 to 10 do
e - ¥ the
Welcome to m U112 «star_ements:
aelsif «expr» then
ITI}I.ISE graph as g wstatementse
wuelse ‘
for i=1 to 10 do ptarEmEEEy
if BRI > then enz.text[m, 15+1, "i="+1i]
wstatements
«elsif «expr: then
wstatements»
Process Edit [£][B][2]cdocu.. G % |
Series 60 sample screen UlQ sample screen

Pressing confirm again selects the entire "e1sif" clause. We don't need
it, so press the delete key.

Pressing confirm again selects the entire "el1se™ clause. We want it to
select a different color if i%2#1, so press confirm to just remove the
quotes. This also selects «statements». Replace it by g.pen (g.green).
The final code now looks as follows:

use graph as g
for i=1 to 10 do

if i%2=1 then
g.pen (g.red)

else
g.pen(g.green)
end;
g.text (10, 15%1i, "i="+1)
end

It is a good idea to practice a little bit with the help system, in particular
with the argument selection feature. Also, browsing through the default

help gives you an overview of the language constructs supported by
help.

62 m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

6. m Library Overview

m comes with roughly 150 functions, organized into modules.

These modules give access to the different components of the phone
and its operating system, or simply add support for the m language:

e builtin functions (Library, p. [7): The builtin functions for type
conversion, string and array handling, comparison, and type tests.

e module array (Library, p.[20): Array functions

e module audio (Library, p.[173): Audio functions

e module contacts (Library, p. : Contacts database
e module £iles (Library, p.[27): File and directory access
e module graph (Library, p.[57): Screen graphics

e module gsm (Library, p. : GSM information

e module io (Library, p.[36): File and stream input/output
e module math (Library, p.[T04): Mathematical functions
e module sms (Library, p.[T67): Short messages

e module systen (Library, p.[47): System related functions
e module time (Library, p.[50): Time and date functions

e module ui (Library, p.[82): User interface functions

In addition to the above modules, part two of the standard library contains
modules which are more specialized, offering roughly 80 additional
functions. However, on some systems they are only part of the full
edition and not available in the free edition.

m Mobile Shell Tutorial & User Guide Version 3.00 63

6. m Library Overview © 2008 airbit AG

e module accel (Library, p.[221): Accelerator Measurements
e module agenda (Library, p.[T09): Agenda Database

e module app (Library, p.[203): Application Control

e module bigint (Library, p.[99): Large Integers

e module bt (Library, p.[125): Bluetooth Communication
e module can (Library, p.[187): Onboard Camera

e module mms (Library, p.[T53): Multimedia Messages

e module net (Library, p.[141): TCP/IP Networking

e module obex (Library, p.[164): Object Exchange Client
e module phone (Library, p.[198): Phone Calls

e module proc (Library, p.: m Processes

e module vibra (Library, p.[97): Vibration Control

e module video (Library, p.[188): Playing Videos

64 m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

7. Installation Guide

7.1 Installation

Like any other |Symbian OS application, m is installed from a .sis
(Symbian Installation System) file.

Get the most recent version of the installation file for your device. You
can always download the most recent files from www.m-shell.net, the
official m website, together with accompanying documentation. For
Windows®, there are complete installers. For other operating systems,
download the . zip file.

Currently, there are four supported device types. For the two 2nd edition
device types, there are just two installation files:
S60 2nd edition uiQ2
mShell-S60-2nd.sis | mShell-UIQ2.sis

For 3rd edition devices (Symbian 9 and higher), there are three variants
due to platform security:

S60 3rd Edition uiQ3
Self signed | mShell-S60-3rd.sis mShell-UIQ3.sis
Online mEnvironment-S60-3rd-0S.sis, | mEnvironment-UIQ3-0S.sis,
signable mShell-560-3rd-0S.sis mEnvironment-UIQ3-0S.sis
DevCert mEnvironment-S60-3rd-DC.sis, | mEnvironment-UIQ3-DC sis,
signable mShell-S60-3rd-DC.sis mEnvironment-UIQ3-DC sis

The three variants are (see also[6.3|(Reference, p.[69) for details):

e The "'self signed’’ package is ready to install, but with some m
functions not permitted by Symbian Platform Security. It contains
the m environment as an embedded package.

e The "online signable” packages must be signed online on
www.symbiansigned.com and installed separately (mEnvironment
tirst). Atter installation, executing m functions requiring extended

m Mobile Shell Tutorial & User Guide Version 3.00 65

http://www.symbian.com
http://www.m-shell.net
http://www.symbiansigned.com

7. Installation Guide © 2008 airbit AG

capabilities will also be permitted.

e The "DevCert signable” packages must be signed with your
own Symbian Developer Certificate and installed separately
(mEnvironment first). After installation, executing m functions
requiring certified capabilities will also be permitted.

On Windows, the simplest way to install m is:

1. Click on symbian Files in the m Mobile Shell start menu.

2. Right click on the appropriate install file and choose Send
To—Bluetooth.

3. Follow the instructions on screen.
You can install m on any storage device you like, either the built-in
memory or the removable memory card.
7.2 Registration
Once installed, you should register m via SMS. Registration serves three
purposes: it registers you as an m user, it automatically provides m with

your phone number to set gsm.number (Library, p.[198), and it helps us
to get reliable statistics about m usage.

66 m Mobile Shell Tutorial & User Guide Version 3.00

© 2008 airbit AG 7.2. Registration

mShell

Confirm
A Confirm |
Do you want to

: : ha Do you want to register this
register this application now?

application now?

Series 60 sample screen UlQ sample screen

During registration, m sends an SMS to the registration server and waits
up to a minute for a response.

If there is no response within this period, the registration process is
suspended, and you are prompted for the phone number as if you
decided not to register. You can also wait until you get an SMS message
starting with abregresp, then start m again (do not delete or move the
message!), and execute the View—Run Registration command. m will
pick up the message from your inbox and evaluate it. If there are many
SMS in your inbox, m will ask you before it starts scanning them, as
this may take considerable time. If you answer No, the inbox will not
be scanned, so a registration response already in your inbox will not be
found.

If you decide not to register, you should enter your own phone number
in the dialog presented. gsm.number (Library, p.[198) will then be set
from your input.

m Mobile Shell Tutorial & User Guide Version 3.00 67

7. Installation Guide © 2008 airbit AG

Your phone number
Your phone number < ‘

4 123 gsm.number| +41791234567 |
+41791234567|

gsm.number

Series 60 sample screen UIQ sample screen

If the need arises, you can rerun the SMS registration process any time
by executing the View—Run Registration command.

68 m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

Index

Index

.mex, [T4][18] 27] 22
sis, 22 [65]

.zip, [20]

application,

array, [33]
associative,
indexing,

array.insert,

array.sort, [42]

assignment, [34]

associative array, @

auto go, [T§]
bgcolor,

Case s.,[26]
color, [28]
command history, [T7]
compiling, [21]
console,
color, [28§]
font, 28
control structures,
CostComm, 37]

Delete,
deserialization,
document directory,

edit,

editor,

encoding,
ErrNotFound,
ExcindexOutOfRange,
executable,

fgcolor,
file,

module,

script, [T9]
file extension,
file system, [49]
Find,
find

editor,
find mode, [26]
Find Up, [26]
folder,
font,
FreeComm, [37]
function,

help system,

IDE, [59]
if, 58]
inbox2m,

Installation, [65]
installation file, [65]
io.close, [50] [51]

m Mobile Shell Tutorial & User Guide Version 3.00

69

Index

(© 2008 airbit AG

io.create,
io.open, [57]

io.readln,
io.readm,
io.writeln,
io.writem,

keep,
keys,

len,
load,
lower, [40]

MEX file,
mfont,
module,

file,
MyDB module, [54]

New folder,
New module,
New script,
New shell,

onboot,
outsize,

pagewise mode, [25]

Partytime,
permissions,
points, [28]

properties, [2§]

ReadAll,

70

ReadApp,
ReadDoc,
receive a file,
Registration, [66]
Replace,
replace

editor,

save, [49] [54]
script,

file,

list,
script state,
script type,
search

editor,
semicolon,
send a file, [T9]
Send As,
serialization,
SIS file,
SMs, 53]
sms.delete,
sms.get, 39
sms.receive, 39
sms.send, [40]
smsctrl,
smskey,
smsnr, 29]

Standalone application,

subfolder,
supervisor,

m Mobile Shell Tutorial & User Guide Version 3.00

(© 2008 airbit AG

Index

trim, [40Q]

ui.cmd, [47]
ui.error,
ui.form, @3]
ui.list, @2
ui.menu, 48]
use, 39

variable,

view size,

website,
while,
Whole w.,
Windows,
WriteAll,

WriteApp, 37]
WriteDoc, [37]

ZIP files,

m Mobile Shell Tutorial & User Guide Version 3.00

71

	Introduction
	About m
	Tutorial Structure

	Quick Start Guide
	Installing m
	A Sample Script
	A Sample Shell Session

	The m Application
	The Script List
	The Console
	Script Files
	Sending and Receiving m Files

	Compiling m Scripts
	Producing Standalone Applications

	The Editor
	Scrolling
	Find and Replace

	The Properties Dialog
	The Supervisor Dialog
	The Permissions Dialog

	m Programming
	Basic Arrays
	Associative Arrays
	Accessing SMS
	Editing Data
	Making it a Function
	Combining SMS and User Interface
	Reading and Writing Files
	Making it a Module
	Conclusion

	m Help System
	Invoking help
	Navigating through patterns

	m Library Overview
	Installation Guide
	Installation
	Registration

	Index

